Category Archives: Basic knowledge of Halogen heater

วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – เครื่องทำความร้อนกล่อง

หลักการพื้นฐานของการทำความร้อนกล่อง

เจาะรูเล็กๆ ในกล่องแล้วให้ความร้อนจากด้านนอก
เมื่อใช้วิธีการทำความร้อนนี้ คุณสามารถสร้างเตาไฟฟ้าอุณหภูมิสูงที่มีโครงสร้างเรียบง่ายได้

สมมติว่าพื้นผิวด้านในของกล่องมีการสะท้อนแสง 100% พลังงานแสงที่ป้อนเข้าจากแสงฉายรังสีทั้งหมดจะสะท้อนในสถานที่อื่นที่ไม่ใช่ช่องฉายรังสี
วัตถุเดียวที่ดูดซับพลังงานแสงนี้คือวัตถุที่อยู่ภายในกล่อง ดังนั้นหากแสงทั้งหมดสามารถดูดซับและแปลงเป็นพลังงานความร้อนได้ ขีดจำกัดความร้อนอาจสูงถึงประมาณ 1,800°C
นี่เป็นวิธีการให้ความร้อนแก่วัตถุที่มีการดูดกลืนแสงอินฟราเรดต่ำสม่ำเสมอ วัตถุที่มีขนาดค่อนข้างใหญ่ และวัตถุที่กระจายตัวไปที่อุณหภูมิสูงและมีประสิทธิภาพสูง
กุญแจสู่ความสำเร็จของวิธีการให้ความร้อนนี้คือการสร้างกล่องที่มีการสะท้อนแสงสูง

แหล่งความร้อนและกล่องสามารถแยกออกจากเตาทั่วไปได้ จึงสามารถใช้งานแบบอินไลน์บนสายพานลำเลียงได้
การทำความร้อนกล่องยังสามารถสร้างเป็นโครงสร้างสองส่วนที่ช่วยให้คุณสามารถใส่และนำวัตถุที่จะให้ความร้อนออกได้
รูปร่างของกล่องไม่ได้จำกัดอยู่แค่สี่เหลี่ยมที่แสดงในภาพเท่านั้น แต่ยังอาจเป็นรูปทรงใดก็ได้ เช่น สามเหลี่ยม ทรงกลม หรือทรงกระบอก

ตามหลักการแล้ว ผนังด้านในของกล่องควรมีพื้นผิวกระจกสะท้อนแสงสูง เช่น ชุบทอง แต่ควันอาจปล่อยออกมาจากวัตถุที่ได้รับความร้อน ทำให้ยากต่อการรักษาพื้นผิวสะท้อนแสงสูง

อีกทางเลือกหนึ่งคือการใช้วัสดุเซรามิกที่มีอัตราการดูดซับรังสีอินฟราเรดสูง แสงที่ฉายรังสีจะถูกวัสดุเซรามิกดูดซับ แล้วเปลี่ยนเป็นความร้อน และใช้การแผ่รังสีความร้อน
อย่างไรก็ตาม การถ่ายเทความร้อนโดยการแผ่รังสีความร้อนจะเกิดขึ้นจากวัตถุที่มีอุณหภูมิสูงไปยังวัตถุที่มีอุณหภูมิต่ำเท่านั้น ดังนั้นจึงจำเป็นต้องให้ความร้อนแก่วัสดุเซรามิกอย่างเพียงพอ ในระหว่างการทำงานต่อเนื่อง อุณหภูมิภายในเตาเผาจะเพิ่มขึ้น ดังนั้นเวลาที่สูญเสียไปจะเกิดขึ้นเฉพาะระหว่างสตาร์ทเครื่องเท่านั้น เมื่ออุณหภูมิเพิ่มขึ้น ความเข้มของพลังงานของการแผ่รังสีความร้อนไปยังวัตถุที่ให้ความร้อนจะเพิ่มขึ้นหากอุณหภูมิแตกต่างกัน แต่ในกรณีนี้ จำเป็นต้องพิจารณาความต้านทานความร้อนของวัสดุเซรามิก

การทำความร้อนในห้องสุญญากาศ

อีกวิธีหนึ่งคือใช้แก้วควอทซ์สำหรับรูฉายรังสีและให้ความร้อนในห้องสุญญากาศ
เนื่องจากภายในสามารถสร้างขึ้นได้ในบรรยากาศที่ไม่ออกซิไดซ์ การประมวลผลความร้อนแบบไม่ออกซิไดซ์จึงเป็นไปได้
อีกวิธีหนึ่งคือสามารถทำปฏิกิริยาเคมีบางประเภทในก๊าซพิเศษได้
สะดวกเป็นพิเศษสำหรับเตาไฟฟ้าที่ต้องการความสะอาด
เนื่องจากไม่มีองค์ประกอบความร้อนภายในเตาเผา จึงไม่มีการปนเปื้อนที่เกิดจากองค์ประกอบความร้อน และภายในยังคงสะอาด
 

วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – เครื่องทำความร้อนโดม

หลักการพื้นฐานของการทำความร้อนแบบโดม

ใช้ฝาครอบโดมเมื่อให้ความร้อนในพื้นที่ที่ค่อนข้างกว้างหรือให้ความร้อนแก่วัสดุที่มีรูปร่างเป็นแผ่นสม่ำเสมอ
หากฝาครอบโดมของคุณต้องการความทนทาน คุณสามารถใช้กระจกคอนเดนเซอร์ของเราเป็นฝาครอบโดมได้

พลังงานแสงที่ฉายรังสีจากรูการฉายรังสีจะถูกฉายรังสีไปยังวัตถุที่ได้รับความร้อนและส่วนหนึ่งจะถูกดูดซับ
โดยทั่วไป วัสดุสะท้อนแสงสูงจะสะท้อนพลังงานแสงและไม่สร้างอุณหภูมิสูง
ในกรณีของการทำความร้อนแบบโดม พลังงานแสงที่ไม่ถูกดูดซับจะถูกสะท้อนอีกครั้ง กระจัดกระจาย และดูดซับภายในโดมหลายครั้ง
การสะท้อนและการดูดซับซ้ำๆ ส่งผลให้มีอุณหภูมิที่สูงขึ้นเมื่อเทียบกับการให้ความร้อนแบบเปิด
การให้ความร้อนแบบไม่ออกซิไดซ์สามารถทำได้โดยการเติมก๊าซเฉื่อยลงในโดม
วิธีการให้ความร้อนนี้มีประสิทธิภาพโดยเฉพาะอย่างยิ่งสำหรับอุปกรณ์ลำเลียงอุปกรณ์ที่ทำงานเป็นระยะๆ เช่น ตารางดัชนี

การป้องกันผลกระทบด้านลบจากการกระแสน้ำขึ้น

ในการทำความร้อนแบบเปิด อากาศรอบๆ วัตถุที่จะให้ความร้อนก็จะถูกทำให้ร้อนเช่นกัน การขยายตัวทางความร้อน และเบาลง ทำให้เกิดกระแสลมขึ้น
อากาศที่อุณหภูมิและความดันปกติจะไหลลงสู่พื้นที่ซึ่งเจือจางและมีแรงดันต่ำจากอากาศที่เพิ่มขึ้น
อากาศที่ไหลนี้จะสัมผัสกับวัตถุที่ต้องการให้ความร้อนและทำให้วัตถุเย็นลง ส่งผลให้ประสิทธิภาพการทำความร้อนลดลง
ไม่มีการสร้างการไหลของอากาศเย็นในการทำความร้อนแบบโดม ทำให้เกิดสภาพแวดล้อมการทำความร้อนที่มีประสิทธิภาพ

การเปรียบเทียบการให้ความร้อนแบบโดมโดยใช้การฉายรังสีแบบเปิดและกระจกควบแน่น

วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – ความร้อนของเฟรม

หลักการพื้นฐานของการทำความร้อนเฟรม

ประสิทธิภาพการทำความร้อนสามารถปรับปรุงได้โดยการสร้างโครงจากวัสดุฉนวนแล้ววางไว้บนวัตถุที่จะให้ความร้อน

วัตถุที่จะให้ความร้อนในการทำความร้อนแบบเฟรมจะถูกให้ความร้อนด้วยองค์ประกอบสามประการ
1. การทำความร้อนโดยตรงจากแหล่งความร้อน
2.เครื่องทำความร้อนเนื่องจากแสงสะท้อนจากผนัง
3. ทำความร้อนด้วยรังสีความร้อนบนผนัง

การป้องกันผลกระทบด้านลบจากการกระแสน้ำขึ้น

ในการทำความร้อนแบบเปิด อากาศรอบๆ วัตถุที่จะให้ความร้อนก็จะถูกทำให้ร้อนเช่นกัน การขยายตัวทางความร้อน และเบาลง ทำให้เกิดกระแสลมขึ้น
อากาศที่อุณหภูมิและความดันปกติจะไหลลงสู่พื้นที่ซึ่งเจือจางและมีแรงดันต่ำจากอากาศที่เพิ่มขึ้น
อากาศที่ไหลนี้จะสัมผัสกับวัตถุที่ต้องการให้ความร้อนและทำให้วัตถุเย็นลง ส่งผลให้ประสิทธิภาพการทำความร้อนลดลง
การทำความร้อนแบบเฟรมสร้างสภาพแวดล้อมการทำความร้อนที่มีประสิทธิภาพเนื่องจากไม่มีอากาศเย็นไหลเข้า
คุณยังสามารถใช้โครงฉนวนเป็นวัสดุปิดบังบริเวณที่คุณไม่ต้องการให้ความร้อนได้
หากใช้เฟรมอย่างต่อเนื่อง ตัวเฟรมจะร้อนและประสิทธิภาพในการเป็นวัสดุปิดบังจะลดลง ดังนั้นจึงจำเป็นต้องมีการระบายความร้อนแบบบังคับเพื่อการใช้งานต่อเนื่อง

การตรวจสอบวิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – ความแตกต่างระหว่างการทำความร้อนระนาบและการทำความร้อนเฟรม

ด้วยการไหลของก๊าซเฉื่อยเข้าสู่เฟรม จึงสามารถบรรลุกระบวนการที่ไม่เกิดออกซิไดซ์หรือออกซิไดซ์ต่ำได้
การปิดด้านบนของกรอบด้วยกระจกควอทซ์จะทำให้ดูสมบูรณ์แบบยิ่งขึ้น

การเปรียบเทียบการฉายรังสีแบบเปิดและการทำความร้อนแบบเฟรม


 

วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – เครื่องทำความร้อนร่อง

หลักการพื้นฐานของการทำความร้อนแบบร่อง

แผนภาพนี้แสดงกรณีที่วัตถุที่จะให้ความร้อนมีขนาดเล็กและเท่ากันหรือเล็กกว่าเส้นผ่านศูนย์กลางการควบแน่น (ความกว้าง) ของเครื่องทำความร้อนแบบฮาโลเจน
สร้างร่องด้วยวิธีง่ายๆ และวางวัตถุที่จะให้ความร้อนไว้ภายในร่อง

Benda yang akan dipanaskan pada pemanasan alur dipanaskan oleh tiga elemen.
1. การทำความร้อนโดยตรงจากแหล่งความร้อน
2.เครื่องทำความร้อนเนื่องจากแสงสะท้อนจากผนัง
3. ทำความร้อนด้วยรังสีความร้อนบนผนัง

การป้องกันผลกระทบด้านลบจากการกระแสน้ำขึ้น

ในการทำความร้อนแบบเปิด อากาศรอบๆ วัตถุที่จะให้ความร้อนก็จะถูกทำให้ร้อนเช่นกัน การขยายตัวทางความร้อน และเบาลง ทำให้เกิดกระแสลมขึ้น
อากาศที่อุณหภูมิและความดันปกติจะไหลลงสู่พื้นที่ซึ่งเจือจางและมีแรงดันต่ำจากอากาศที่เพิ่มขึ้น
อากาศที่ไหลนี้จะสัมผัสกับวัตถุที่ต้องการให้ความร้อนและทำให้วัตถุเย็นลง ส่งผลให้ประสิทธิภาพการทำความร้อนลดลง
การทำความร้อนแบบร่องไม่สร้างการไหลเวียนของอากาศเย็น ทำให้เกิดสภาพแวดล้อมการทำความร้อนที่มีประสิทธิภาพ

การตรวจสอบวิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด – ความแตกต่างระหว่างการทำความร้อนระนาบและการทำความร้อนแบบร่อง

ด้วยการไหลของก๊าซเฉื่อยเข้าสู่เฟรม จึงสามารถบรรลุกระบวนการที่ไม่เกิดออกซิไดซ์หรือออกซิไดซ์ต่ำได้
การปิดด้านบนของกรอบด้วยกระจกควอทซ์จะทำให้ดูสมบูรณ์แบบยิ่งขึ้น

การเปรียบเทียบการฉายรังสีแบบเปิดและการทำความร้อนแบบร่อง

ยกตัวอย่าง HPH-60/F30/36V-450W ซึ่งติดตั้งกระจกคอนเดนเซอร์ Φ60 และมีความยาวโฟกัส 30 มม. โดยมีเส้นผ่านศูนย์กลางโฟกัสที่กำหนดคือ Φ8 ดังนั้นจึงเหมาะสำหรับการทำความร้อนแบบร่อง
เวลาที่ต้องใช้เพื่อให้ถึง 800°C คือภายใน 20 วินาทีด้วยการทำความร้อนแบบร่อง แต่ก็ไม่สามารถทำได้แม้แต่ภายใน 40 วินาทีด้วยการทำความร้อนแบบเปิด
การใช้ไฟให้ความร้อนแบบสะท้อนกลับทำให้เกิดความแตกต่างในการยืดตัวในบริเวณที่มีอุณหภูมิสูง
 

จะให้ความร้อนแก่วัตถุให้มีอุณหภูมิและความสม่ำเสมอสูงขึ้นได้อย่างไร?

1. ลดระยะห่าง

ยิ่งระยะห่างระหว่างเครื่องทำความร้อนกับวัตถุที่ต้องการให้ความร้อนยิ่งมากเท่าไร อุณหภูมิก็ยิ่งสูงขึ้นเท่านั้น

ในเครื่องทำความร้อนแบบจุดฮาโลเจนซีรีส์ HPH-60
ตามลำดับ f30>f60>f105 แม้ว่าจำนวนวัตต์จะเท่ากัน แต่อุณหภูมิจะลดลงเมื่อระยะห่างเพิ่มขึ้น

เมื่อแสงกระจายแสงก็จะลดลง ดังนั้นยิ่งระยะทางยิ่งใกล้ประสิทธิภาพการทำความร้อนก็จะยิ่งดีขึ้น
ปรากฏการณ์นี้ยังพบเห็นได้ในชีวิตประจำวันเช่นกัน โดยที่แหล่งกำเนิดแสงที่อยู่ห่างไกลจะสว่างน้อยกว่าบริเวณใกล้เคียง

2.ฉายรังสีในมุมแนวตั้ง

เมื่อให้ความร้อนด้วยกระจกคอนเดนเซอร์ชนิดแสงแบบขนานระยะห่างจากศูนย์กลางจะเท่ากันและมุมการฉายรังสีจะเป็นแนวทแยงและมุมการฉายรังสีจะเป็นแนวตั้ง อุณหภูมิของสิ่งต่าง ๆ เพิ่มขึ้น

3.ใช้แสงที่ไม่โดนวัตถุที่ถูกทำให้ร้อน

แผ่นสะท้อนแสงใช้สะท้อนแสงที่ไม่กระทบวัตถุเพื่อให้ความร้อนในทิศทางที่วัตถุได้รับความร้อน
วัสดุสะท้อนแสงใช้วัสดุที่มีการสะท้อนแสงสูง
เมื่อทำเช่นนี้ คุณสามารถเพิ่มความร้อนให้กับ “สิ่งที่ต้องให้ความร้อน” และ “พื้นผิวที่ติดตั้งสิ่งที่ให้ความร้อน”
แสงที่ไม่ถูกดูดซับจะถูกสะท้อนอีกครั้งและก่อให้เกิดความร้อน

นอกจากนี้เนื่องจากพื้นผิวที่จะให้ความร้อนและพื้นผิวที่ติดตั้งวัสดุที่ให้ความร้อนนั้นสัมผัสกัน
ใช้บนพื้นผิวที่จะติดตั้งวัสดุที่มีการดูดซับอินฟราเรดที่ดีและมีค่าการนำความร้อนสูง
พื้นผิวดูดซับแสงและร้อนขึ้น และหากพื้นผิวร้อนขึ้น ก็สามารถถ่ายเทความร้อนไปยังวัตถุที่ถูกให้ความร้อนได้
วิธีนี้ได้ผลแม้ว่าคุณจะไม่ได้ใช้รีเฟลกเตอร์ก็ตาม

วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรดคืออะไร?

ภาพรวมของวิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด

การทำความร้อนแบบรวมศูนย์โดยใช้หลอดฮาโลเจนจะใช้กระจกควบแน่นเพื่อรวมพลังงานแสงไปที่วัตถุเพื่อให้ร้อนที่อุณหภูมิสูง
จากแสงตกกระทบบนวัตถุที่จะให้ความร้อน ยิ่งแสงสะท้อนมากไม่รวมแสงที่ถูกดูดซับ อุณหภูมิของวัตถุก็จะยิ่งต่ำลง การทำความร้อนโดยใช้เพียงกระจกควบแน่นจะช่วยลดการใช้แสงสะท้อนนี้
ในวิธีการให้ความร้อนแบบสะท้อนกลับ แสงสะท้อนนี้จะถูกนำมาใช้ซ้ำโดยใช้วัสดุสะท้อนแสง ซึ่งมีส่วนช่วยให้ความร้อนและความสม่ำเสมอของอุณหภูมิของวัตถุที่จะให้ความร้อน

การให้ความร้อนแก่วัสดุสะท้อนแสงสูง

วัสดุที่มีการสะท้อนแสงอินฟราเรดสูงคือวัสดุที่มีการดูดกลืนแสงอินฟราเรดต่ำ วัสดุที่มีการดูดกลืนแสงอินฟราเรดต่ำอาจกล่าวได้ว่าให้ความร้อนที่อุณหภูมิสูงได้ยาก
การนำแสงอินฟราเรดที่สะท้อนกลับเข้าสู่วัสดุกลับมาใช้ใหม่ จะทำให้วัสดุร้อนขึ้นได้

การทำความร้อนของวัสดุขนาดเล็ก

ยิ่งมวลน้อย อุณหภูมิก็จะสูงขึ้นเร็วขึ้นเมื่อถูกความร้อน
การทำความร้อนแบบสะท้อนซ้ำเหมาะสำหรับการทำความร้อนวัสดุที่มีขนาดเล็กมากที่อุณหภูมิสูง การใช้เพียงกระจกควบแน่นทำให้สามารถเข้าถึงอุณหภูมิที่สูงกว่าวิธีการทำความร้อนได้มาก

เครื่องทำความร้อนสม่ำเสมอ

ในการทำความร้อนแบบควบแน่นโดยใช้หลอดฮาโลเจน แหล่งความร้อนคือจุดหรือเส้น ด้วยเหตุนี้ จึงมักคิดว่าการให้ความร้อนในรูปแบบ “ระนาบ” เป็นเรื่องยาก
ด้วยการเปลี่ยนระยะการฉายรังสีและการเปลี่ยนโฟกัส ทำให้เป็นไปได้ที่จะให้ความร้อนแก่รูปร่างของพื้นผิวโดยใช้การให้ความร้อนด้วยแสงควบแน่น ใช้วิธีการทำความร้อนแบบสะท้อนเพื่อให้ความร้อนสม่ำเสมอยิ่งขึ้น

วัสดุวัสดุสะท้อนแสง

ชุบทอง

เป็นวัสดุเคลือบทองสะท้อนแสงสูง
การชุบทองนั้นเปลี่ยนสีได้ยากและมีความทนทานต่อการกัดกร่อนได้ดีเยี่ยม

ขัดอลูมิเนียม

อลูมิเนียมขัดเงาเป็นวัสดุที่คุ้มค่าและสะท้อนแสงได้สูง
การสะท้อนกลับลดลงประมาณ 10% เมื่อเทียบกับการชุบทอง
สามารถขัดซ้ำได้จึงสามารถใช้งานได้นานหากได้รับการดูแล

รู้เบื้องต้นเกี่ยวกับเครื่องทำความร้อนแบบฮาโลเจน

ภาพรวมของเครื่องทำความร้อนจุดฮาโลเจน

  1. ข้อควรระวังเพื่อความปลอดภัย (สำคัญ)
  2. คุณสมบัติของเครื่องทำความร้อนฮาโลเจน
  3. วิธีการเลือกฮีตเครื่องทำความร้อนจุดฮาโลเจนและเครื่องทำความร้อนเส้นฮาโลเจน
  4. ข้อควรระวังในการใช้เครื่องทำความร้อนฮาโลเจน

เครื่องทำความร้อนจุดฮาโลเจน

  1. ภาพรวมของเครื่องทำความร้อนจุดฮาโลเจน
  2. โครงสร้างพื้นฐานของเครื่องทำความร้อนจุดฮาโลเจน
  3. วิธีใช้เครื่องทำความร้อนจุดฮาโลเจน
  4. ความยาวโฟกัสและเส้นผ่านศูนย์กลางโฟกัสของฮีตเตอร์สปอตฮาโลเจน
  5. การกระจายอุณหภูมิของเครื่องทำความร้อนจุดฮาโลเจน
  6. เครื่องทำความร้อนจุดฮาโลเจนและการระบายความร้อน
  7. อายุการใช้งานของเครื่องทำความร้อนจุดฮาโลเจน

เครื่องทำความร้อนเส้นฮาโลเจน

  1. ภาพรวมของเครื่องทำความร้อนเส้นฮาโลเจน
  2. โครงสร้างพื้นฐานของฮีตเครื่องทำความร้อนเส้นฮาโลเจน
  3. วิธีใช้เครื่องทำความร้อนเส้นฮาโลเจน
  4. ความกว้างโฟกัสและความยาวโฟกัสของเครื่องทำความร้อนเส้นฮาโลเจน
  5. การกระจายอุณหภูมิขอเครื่องทำความร้อนเส้นฮาโลเจน
  6. การระบายความร้อนขอเครื่องทำความร้อนเส้นฮาโลเจน
  7. อายุการใช้งานของเครื่องทำความร้อนเส้นฮาโลเจน
  8. การทำความร้อนพื้นผิวบริเวณกว้างโดยใช้ฮีตเครื่องทำความร้อนเส้นฮาโลเจน

ความรู้พื้นฐานเครื่องทำความร้อนหลอดฮาโลเจน

  1. กระบวนการพัฒนาที่นำไปสู่หลอดฮาโลเจน
  2. ประเภทและกลไกของหลอดฮาโลเจน
  3. เกี่ยวกับขดลวดไส้หลอด
  4. การรักษาความร้อนของทังสเตน
  5. หลอดฮาโลเจนหลอดแก้วควอทซ์
  6. ซีลหลอดฮาโลเจน (ซีล)

ซีลหลอดฮาโลเจน (ซีล)

หลอดฮาโลเจน เช่น หลอดไส้ ต้องมีโครงสร้างปิดผนึกอย่างแน่นหนาเพื่อป้องกันไม่ให้ก๊าซที่ปิดผนึกรั่วไหลออกสู่ภายนอก ในหลอดฮาโลเจน อุณหภูมิของหลอดไฟต้องอยู่ที่ 250°C หรือสูงกว่าเป็นเงื่อนไขสำหรับวงจรฮาโลเจนที่จะเกิดขึ้น ดังนั้นหลอดไฟจึงใช้แก้วที่มีความต้านทานความร้อนสูง เช่น แก้วควอทซ์ แก้วควอตซ์มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนที่น้อยกว่าแก้วโซดาที่ใช้ในหลอดไฟทั่วไปมากกว่า 10 เท่า แก้วซิลิกาใช้ลวดตะกั่วที่ทำจากโลหะผสมของเหล็กและนิกเกิลที่เรียกว่าลวด Dumet และเนื่องจากค่าสัมประสิทธิ์ของการขยายตัวทางความร้อนค่อนข้างใกล้เคียง จึงสามารถปิดผนึกได้เหมือนเดิม เนื่องจากมีการใช้แก้วควอทซ์ในหลอดฮาโลเจน เพื่อให้ตรงกับค่าสัมประสิทธิ์ของการขยายตัวทางความร้อน ลวดตะกั่วตรงจะไม่ปิดผนึกด้วยแก้ว แต่จะใช้ฟอยล์โลหะบางพิเศษของโมลิบดีนัมที่มีความหนา 20 ถึง 30 ไมโครเมตร (0.02) มม. ถึง 0.03 มม.) ถูกนำมาใช้. หากฟอยล์โมลิบดีนัมหนากว่านี้ จะเกิดรอยร้าวในแก้วควอทซ์เนื่องจากความแตกต่างของค่าสัมประสิทธิ์การขยายตัวทางความร้อน ทำให้ไม่สามารถรักษาสภาพสุญญากาศได้ กลายเป็น.

ลวดตะกั่วทำจากโมลิบดีนัมหรือทังสเตน
เช่นเดียวกับโมลิบดีนัมฟอยล์ในส่วนการปิดผนึก ลวดตะกั่วนี้ไม่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนเช่นเดียวกับแก้วควอทซ์ ดังนั้นมันจึงถูกปิดผนึกด้วยการหนีบ แต่ก็ไม่ได้ปฏิบัติตามอย่างเคร่งครัด เฉพาะส่วนฟอยล์โมลิบดีนัมเท่านั้นที่สัมผัสใกล้ชิดกับแก้วควอทซ์ และทำให้โครงสร้างปิดสนิท ลวดตะกั่วที่ต่อออกจากส่วนที่ปิดสนิทของหลอดไฟจะสัมผัสกับอากาศภายนอกเสมอ และอยู่ในบรรยากาศที่มีอุณหภูมิสูงเมื่อจุดไฟ ในบรรยากาศที่มีอุณหภูมิสูง ลวดตะกั่วจะค่อยๆ ออกซิไดซ์และในที่สุดก็ลุกลามไปถึงฟอยล์โมลิบดีนัมของซีล เมื่อออกซิเดชันดำเนินไป อุณหภูมิที่เพิ่มขึ้นและความเครียดจากความร้อนเนื่องจากค่าความต้านทานที่เพิ่มขึ้นจะทำให้ชิ้นส่วนซีลเสียหาย ”
วิธีหนึ่งในการป้องกันความเสียหายนี้คือการรักษาฟอยล์โมลิบดีนัมเพื่อป้องกันการเกิดออกซิเดชัน วิธีแรกคือวิธีการฝังสารที่ประกอบด้วยโครเมียม อะลูมิเนียม ซิลิกอน ไททาเนียม แทนทาลัม แพลเลเดียม ฯลฯ โดยการฝังไอออนเข้าไปในโมลิบดีนัมฟอยล์หรือตัวนำด้านนอก วิธีที่สองคือการเคลือบผิวของฟอยล์โมลิบดีนัมด้วยฟิล์มที่ทนต่อการเกิดออกซิเดชันซึ่งทำจากซิลิกอนออกไซด์

ฟอยล์โมลิบดีนัมออกซิไดซ์ในบรรยากาศที่มีอุณหภูมิสูง และเริ่มออกซิไดซ์ทีละน้อยที่อุณหภูมิสูงกว่า 200°C ในอากาศ ในฐานะที่เป็นมาตรการป้องกันการเกิดออกซิเดชั่น การบังคับให้ชิ้นส่วนซีลเย็นลงด้วยลมอัดหรือติดตั้งฮีตซิงก์เพื่อกระจายความร้อนออกจากชิ้นส่วนซีลนั้นมีประสิทธิภาพ

ที่บริษัทของเรา เราเติมฐานอะลูมิเนียมของเครื่องทำความร้อนจุดฮาโลเจน
ด้วยผงโลหะออกไซด์ซึ่งมีคุณสมบัติการนำความร้อนที่ดี เพื่อเร่งการกระจายความร้อนของฮีตซิงก์ให้เร็วขึ้น

 

หลอดฮาโลเจนหลอดแก้วควอทซ์

เกี่ยวกับหลอดแก้วควอทซ์

เนื่องจากวงจรฮาโลเจน หลอดไฟฮาโลเจนจะต้องทำจากแก้วทนความร้อนที่มีอุณหภูมิ 250°C หรือสูงกว่าเมื่อติดไฟ นอกจากนี้ ก๊าซเฉื่อยและก๊าซฮาโลเจนภายในหลอดไฟยังถูกปิดผนึกที่ความดันสูง 1×10^5~4×10^5Pa และความดันขณะให้แสงสว่างจะสูงถึง 1.3 ถึง 7.0 เท่านี้ ด้วยเหตุนี้จึงใช้แก้วควอตซ์ แก้วซิลิกาเป็นวัสดุที่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำมาก ดังนั้นแม้ว่าพื้นผิวของแก้วจะมีความแตกต่างของอุณหภูมิ ความเค้นเนื่องจากความร้อนจะมีเพียงเล็กน้อย และสามารถรับมือกับการเปลี่ยนแปลงอุณหภูมิอย่างกะทันหันได้ แก้วควอตซ์เป็นสารที่มีความบริสุทธิ์สูง แต่มีสารเจือปนอยู่เล็กน้อย การชะล้างสิ่งเจือปนนี้สัมพันธ์อย่างใกล้ชิดกับอุณหภูมิ และในกรณีของแก้วควอทซ์ การชะสิ่งเจือปนและการซึมผ่านของก๊าซที่เติมเริ่มต้นที่ประมาณ 800°C เหตุผลที่ควรรักษาอุณหภูมิของหลอดไฟฮาโลเจนให้ต่ำกว่า 800°C โดยควรต่ำกว่า 700°C คือความสัมพันธ์ระหว่างสิ่งเจือปนและอุณหภูมิ หากสมดุลของก๊าซภายในหลอดฮาโลเจนเปลี่ยนไป จะทำให้เกิดสีดำและทำให้อายุการใช้งานของหลอดสั้นลง
ในบรรดาสิ่งเจือปนเหล่านี้มีน้ำผสมอยู่เล็กน้อย กระจกเป็นวัสดุที่กันน้ำได้ และคุณมองไม่เห็นน้ำภายในแก้ว ซึ่งปกติแล้วจะไม่เป็นปัญหา น้ำนี้มีอยู่ในกลุ่มไฮดรอกซิล (กลุ่มไฮดรอกซี) ที่อุณหภูมิสูง เมื่ออุณหภูมิสูงกว่า 600°C กลุ่มไฮดรอกซิลจะละลายเข้าไปในหลอดไฟ และแม้แต่น้ำเพียงเล็กน้อยก็ทำให้เกิดวัฏจักรของน้ำ ซึ่งเป็นการเร่งการใช้ทังสเตน ใน “วัฏจักรของน้ำ” ไอน้ำจะถูกย่อยสลายบนพื้นผิวของทังสเตนที่มีอุณหภูมิสูงให้กลายเป็นออกไซด์ของทังสเตนและอะตอมของไฮโดรเจน ทังสเตนออกไซด์จะระเหยและเกาะติดกับผนังกระจก และอะตอมไฮโดรเจนจะกำจัดออกไซด์ของออกซิเจนและคืนกลับเป็นไอน้ำ เป็นที่เข้าใจกันว่าการระเหยของทังสเตนซ้ำ ๆ นี้ช่วยเร่งการบริโภค
ในเวลานี้ วงจรฮาโลเจนยังเกิดขึ้นในเวลาเดียวกันในหลอดฮาโลเจน การเปลี่ยนตำแหน่งของไส้หลอดทังสเตนเนื่องจากวัฏจักรฮาโลเจนและการระเหยของไส้หลอดทังสเตนเนื่องจากวัฏจักรของน้ำทำให้พื้นผิวของไส้หลอดทังสเตนไม่สม่ำเสมอในช่วงเวลาสั้น ๆ ส่งผลให้ขาดการเชื่อมต่อ ดังนั้นจึงควรใช้แก้วควอทซ์ที่มีปริมาณน้ำน้อย นอกจากนี้ เหมาะอย่างยิ่งที่จะใช้กระบวนการผลิตที่ป้องกันไม่ให้น้ำ (ออกซิเจน) เข้ามาในระหว่างกระบวนการแปรรูปเป็นหลอดฮาโลเจน หากปะปนเข้าไป สามารถกำจัดออกได้ด้วยการอบชุบด้วยความร้อนที่อุณหภูมิ 800 องศาขึ้นไป หรือโดยการใส่ท่อรับออกซิเจนเข้าไปในหลอดไฟเพื่อดูดซับ

การทำความสะอาดพื้นผิวแก้วควอตซ์

หากพื้นผิวแก้วควอทซ์ถูกทำให้ร้อนโดยมีสิ่งสกปรกติดอยู่แม้เพียงเล็กน้อย สิ่งสกปรกจะซึมเข้าไปในแก้ว ทำให้ความแข็งแรงลดลง ขัดขวางวงจรฮาโลเจน และการสูญเสียน้ำซึ่งความโปร่งใสของแก้วจะสูญเสียไป
ดังนั้นจึงจำเป็นต้องดำเนินการทำความสะอาด . ละลายพื้นผิวแก้วควอตซ์ด้วยกรดไฮโดรฟลูออริกเพื่อขจัดสิ่งสกปรก แช่กรดไฮโดรฟลูออริก 5% ถึง 10% เป็นเวลาหลายนาที แล้วล้างกรดไฮโดรฟลูออริกออกให้สะอาดด้วยน้ำบริสุทธิ์ กรดไฮโดรฟลูออริกเป็นสารเคมีที่อันตรายมากต่อร่างกายมนุษย์ ดังนั้นจึงมักใช้แอมโมเนียมฟลูออไรด์ซึ่งมีอันตรายน้อยกว่า
เพื่อลดการเกิด devitrification ห้ามจับแก้วควอทซ์ด้วยมือเปล่า

เกี่ยวกับการแปรรูปแก้วควอทซ์

แก้วควอทซ์ถูกแปรรูปโดยการให้ความร้อนที่อุณหภูมิสูง (ประมาณ 2,000°C) ด้วยเตาแก๊ส ฯลฯ แล้วกดด้วยแท่งคาร์บอนหรือแท่งโลหะเพื่อทำให้เสียรูป หรือโดยการกดด้วยแม่พิมพ์โลหะ
หัวเตาแก๊สในอุดมคติคือเปลวไฟออกซิเจนไฮโดรเจน ในหัวเผาก๊าซ ออกซิเจนและไฮโดรเจนจะถูกผสมไว้ล่วงหน้า จากนั้นจะถูกเป่าออกจากหัวฉีดด้วยความเร็วสูงเพื่อเผาไหม้ , มี “หัวเตาแก๊สผสมขั้นสูง” ที่เผาไหม้ อย่างหลังมีความเร็วเปลวไฟน้อยกว่าและเหมาะสำหรับการประมวลผลพื้นที่ขนาดใหญ่ของควอตซ์
ประเภทการผสมรากช่วยป้องกันการเผาไหม้ไม่ให้เข้าสู่หัวฉีดโดยการสร้างการไหลความเร็วสูงภายในหัวฉีด ดังนั้นโดยพื้นฐานแล้วเปลวไฟจะกลายเป็นการไหลความเร็วสูงด้วย หัวเตาแก๊สรูปแบบนี้เหมาะสำหรับการให้ความร้อนในพื้นที่ขนาดเล็ก
หากความเร็วการไหลของหัวฉีดของหัวเผาแก๊สชนิดผสมรากนี้ลดลง การเผาไหม้จะเข้าสู่หัวฉีด (ปรากฏการณ์ย้อนรอย) และแก๊สผสมออกซิเจน-ไฮโดรเจนในหัวแก๊สจะระเบิดและเผาไหม้ในคราวเดียว ทำให้เกิดเสียงระเบิดดัง . หากปล่อยทิ้งไว้ในสถานะนี้ การเผาไหม้อาจดำเนินต่อไปในเครื่องผสมแก๊ส และบริเวณใกล้เคียงของเครื่องผสมจะไหม้
บางครั้งมีการใช้เปลวไฟผสมของก๊าซมีเทนหรือก๊าซโพรเพนและออกซิเจนในการประมวลผลควอตซ์ด้วยเหตุผลทางเศรษฐกิจ ในกรณีนี้ ก๊าซเชื้อเพลิงเหล่านี้ไม่ผสมกับออกซิเจนได้เร็วเท่ากับไฮโดรเจน และมีอุณหภูมิการเผาไหม้ที่ต่ำกว่า ดังนั้นส่วนใหญ่เป็น “หัวเผาแก๊สแบบผสมราก”
หัวเตาแก๊สที่มีรูหัวฉีดหลายรูใช้เพื่อทำความร้อนในพื้นที่ขนาดใหญ่ จุดให้ความร้อนค่อนข้างใกล้กับหัวฉีด และความเร็วการไหลของเปลวไฟนั้นรวดเร็ว ดังนั้นจึงมีแนวโน้มที่จะดันและทำให้กระจกที่ร้อนและอ่อนเสียรูป หากคุณหยุดแก๊สจากหัวเผาแก๊สนี้อย่างกระทันหัน ความเร็วการไหลของหัวฉีดจะลดลงและเกิดไฟย้อนกลับ ทำให้เกิดเสียงระเบิด
เพื่อหลีกเลี่ยงปัญหานี้ คุณสามารถหยุดออกซิเจนช้าๆ ก่อนแล้วจึงหยุดแก๊สเชื้อเพลิง หรือหยุดแก๊สเชื้อเพลิงก่อนแล้วเป่าออก ไม่ว่าจะด้วยวิธีใด ความเร็วของการไหลจะลดลง ดังนั้นการย้อนกลับจะเกิดขึ้นได้ง่าย และการปิดอย่างรวดเร็วจะไม่สามารถทำได้ เพื่อดำเนินการปิดเครื่องอย่างรวดเร็ว ให้หยุดก๊าซที่เผาไหม้และเป่าลมเข้าไปในเครื่องผสมพร้อมกันเพื่อเป่าออกโดยไม่ลดความเร็วการไหลของหัวฉีด
หัวเตาแก๊สนี้ยังต้องให้ความสนใจกับการจุดระเบิด เป็นเรื่องปกติที่จะดับแก๊สเชื้อเพลิงก่อนเพื่อจุดไฟแล้วจึงดับออกซิเจน แต่มันเป็นไปไม่ได้ที่จะจุดไฟอย่างรวดเร็ว การจุดระเบิดบ่อยครั้งสามารถจัดการได้โดยการจุดไฟด้วยหัวเผาเฉพาะ (เปลวไฟไฮโดรเจน) โดยปล่อยก๊าซเชื้อเพลิงและออกซิเจนพร้อมกันที่อัตราการไหลที่ตั้งไว้ล่วงหน้า
เมื่อแก้วร้อนและนิ่มลงพอสมควร ก็นำไปแปรรูปได้ แก้วควอทซ์อาจติดกับโลหะระหว่างการกดโดยใช้แม่พิมพ์โลหะ คาร์บอนมีประสิทธิภาพในการปลดปล่อยวัสดุเพื่อป้องกันสิ่งนี้ เมื่อคาร์บอนสัมผัสกับควอตซ์ที่มีอุณหภูมิสูง คาร์บอนจะลดการผลิต COx และสลายตัวอย่างรุนแรง โดยทั่วไปจะใช้น้ำมันเป็นวิธีการเติมคาร์บอน
เมื่อควอตซ์ถูกให้ความร้อนที่อุณหภูมิสูงและอ่อนตัวลง ซิลิกาจะเกาะติดกับบริเวณโดยรอบและกลายเป็นสีขาวขุ่น นี่เป็นเพราะควอตซ์ระเหยเนื่องจากความร้อนและยึดติดกับส่วนที่มีอุณหภูมิต่ำ เพื่อป้องกันสิ่งนี้ให้ได้มากที่สุด มีวิธีการใช้อากาศหรือหัวเผาแก๊สกับส่วนที่มีแนวโน้มว่าซิลิกาจะเกาะอยู่
การระเหยของผลึกจะรุนแรงในการลดเปลวไฟ คิดว่าเป็นเพราะควอตซ์ถูกลดขนาดเป็น SiO ทำให้ระเหยได้ง่ายขึ้น ดังนั้น ซิลิกาจะมีโอกาสเกาะติดน้อยลงหากตั้งค่าเปลวไฟในกระบวนการผลิตเป็นเปลวไฟที่มีออกซิเจนมากเกินไป อย่างไรก็ตาม เปลวไฟประเภทนี้มีกำลังความร้อนที่อ่อนกว่าเมื่อเทียบกับความเร็วการไหล และเนื่องจากไม่มีการลดปฏิกิริยา ฟอยล์โมลิบดีนัมจึงมีแนวโน้มที่จะออกซิไดซ์และแตกระหว่างการปิดผนึก
ควรเผาซิลิกาที่เกาะอยู่ออกด้วยเปลวไฟออกซิเจนส่วนเกินหรือกำจัดออกด้วยกรดไฮโดรฟลูออริก อย่างไรก็ตาม ไม่สามารถใช้เป็นหลอดไฟได้หลังจากปิดผนึกแล้ว
การกดควรทำในเวลาที่สั้นที่สุด เมื่อกดทับเป็นเวลานาน อุณหภูมิของควอตซ์จะลดลงอย่างรวดเร็ว ทำให้เกิดรอยร้าวและบิดเบี้ยวอย่างรุนแรง

การกำจัดความผิดเพี้ยนหลังการประมวลผลแก้วควอทซ์

เมื่อประมวลผลแก้วควอทซ์ ความผิดเพี้ยนจะเกิดขึ้นเนื่องจากการกระจายตัวของอุณหภูมิระหว่างการประมวลผล ความเครียดคือสถานะที่แรงอัดหรือแรงดึงยังคงอยู่ระหว่างโมเลกุลภายในควอตซ์ สามารถยืนยันการบิดเบือนด้วยสายตาได้ด้วย “เครื่องวัดความผิดเพี้ยน” ที่ใช้แสงโพลาไรซ์
เนื่องจากความเครียดที่ตกค้างนี้ลดความแข็งแรงของแก้วควอทซ์ จึงไม่สามารถทนต่อแรงดันภายในระหว่างการทำงานของหลอด ทำให้เกิดการแตกหรือร้าว ซึ่งนำไปสู่ความล้มเหลวในเบื้องต้นของหลอดเนื่องจากการรั่วไหลของก๊าซปิดผนึก นอกจากนี้ เมื่อเปลี่ยนหลอดไฟ หลอดไฟอาจแตกได้แม้ว่าคุณจะไม่ได้ออกแรงมากก็ตาม
การหลอมจะดำเนินการเพื่อขจัดความเครียดที่ตกค้าง ความเครียดที่ตกค้างสามารถลดลงได้มากโดยการจับชิ้นส่วนที่ผ่านกระบวนการไว้ที่อุณหภูมิสูงกว่าจุดหลอมเหลว อุ่นให้ร้อน จากนั้นค่อยๆ ทำให้เย็นลงเพื่อไม่ให้ความเครียดเกิดขึ้นอีก ระยะเวลาการถือครองและอัตราการเย็นตัวที่เหมาะสมขึ้นอยู่กับรูปร่างของวัสดุ การให้ความร้อนที่อุณหภูมิสูงยังมีข้อได้เปรียบในการเผาและปัดเศษรอยแตกเล็กๆ ที่เกิดขึ้นระหว่างการกดเพื่อให้ไม่เป็นอันตราย
แม้ว่าคุณจะไม่มีเตาขจัดความผิดเพี้ยนแบบพิเศษ แต่หากคุณทำงานอย่างระมัดระวังกับจุดเหล่านี้ ความผิดเพี้ยนสามารถลบออกได้จนถึงระดับที่ไม่มีความเสียหายจริง อย่างไรก็ตาม เป็นเรื่องยากที่จะขจัดความผิดเพี้ยนออกไปจนไม่สามารถตรวจจับได้ด้วยสเตรนเกจ

หลอดฮาโลเจนที่ใช้แก้วอื่นที่ไม่ใช่แก้วควอทซ์

หลอดแก้วควอทซ์ไม่ใช่ข้อกำหนดบังคับสำหรับวัสดุหลอดของหลอดฮาโลเจน หลอดฮาโลเจนที่ใช้แก้ว (แก้วอะลูมิโนซิลิเกตหรือแก้วบอโรซิลิเกตที่มีค่าสัมประสิทธิ์การขยายตัวตรงกับโมลิบดีนัม) ที่สามารถทนต่ออุณหภูมิสูงปานกลางได้ แม้ว่าจะไม่สูงเท่าแก้วควอทซ์ก็ตาม และใช้วิธีการปิดผนึกแบบปกติที่ไม่ใช้ กระดาษฟอยล์. ยังมีอยู่ เหล่านี้เป็นพันธุ์ที่ผลิตจำนวนมากและใช้เป็นวิธีลดต้นทุน อย่างไรก็ตาม ไม่สามารถใช้กับหลอดฮาโลเจนกำลังสูงได้ และไม่เหมาะสำหรับการผลิตล็อตเล็กๆ

 

การรักษาความร้อนของทังสเตน

การรักษาความร้อนของทังสเตน

จุดหลอมเหลวของทังสเตนคือ 3422°C ซึ่งเป็นจุดหลอมเหลวสูงสุดในบรรดาโลหะ จากมุมมองของการประมวลผล มันมีอุณหภูมิการเปลี่ยนจากความเหนียวเป็นเปราะสูงและมีความเปราะที่อุณหภูมิต่ำที่อุณหภูมิห้อง เป็นโลหะที่แปรรูปได้ยากเนื่องจากแรงยึดเกาะที่ขอบเกรนนั้นอ่อนแอและง่ายต่อการแตกร้าวจากขอบเกรน
“การเติมรีเนียม (Re) เป็นที่ทราบกันดีว่าช่วยเพิ่มความเหนียวของทังสเตนที่อุณหภูมิต่ำ แต่มันเป็นโลหะที่มีราคาแพงที่สุดและไม่สามารถใช้งานได้จริง
อีกทางเลือกหนึ่งคือการปรับแต่งโครงสร้างของเกรนด้วยผงโลหะและกระบวนการแปรรูปด้วยความร้อน ทังสเตนสกัดจากเหมืองและผง ขึ้นรูปด้วยผงโลหะ ในทังสเตนแบบอัดแน่นนี้ ขนาดและรูปร่างของผงเผาผนึก (รูปร่างเกรนเท่ากัน) จะถูกบดและยืดออกโดยการทำงานพลาสติก เช่น การม้วนและการวาดลวด ทำให้เกิดการเคลื่อนตัวจำนวนมาก และลดขนาดเม็ดคริสตัล และรูปร่างของเมล็ดข้าวยังขยายไปในทิศทางที่เฉพาะเจาะจงอีกด้วย
เป็นผลให้สามารถลดอุณหภูมิการเปลี่ยนผ่านที่มีความเหนียวและเปราะลงให้ใกล้เคียงกับอุณหภูมิห้องโดยส่งเสริมการปรับแต่งโครงสร้างเกรนระบายความร้อน แบ่งประเภทของงานพลาสติกตามอุณหภูมิระหว่างการแปรรูป หากอุณหภูมิใกล้เคียงกับอุณหภูมิห้อง แสดงว่า การทำงานเย็น”” หากมีจุดหลอมเหลวมากกว่าครึ่งหนึ่ง แสดงว่า “”การทำงานร้อน”” และหากต่ำกว่าครึ่งหนึ่ง แสดงว่า “”การทำงานอุ่น””ในการทำงานที่ร้อน เป็นเรื่องยากที่จะแปรรูปผลิตภัณฑ์ที่บางและบางให้เท่ากัน เนื่องจากอุณหภูมิที่ลดลงระหว่างการแปรรูป ดังนั้นเส้นใยจึงถูกผลิตโดยการทำงานเย็น การอบอ่อนเพื่อลดความเครียดเป็นสิ่งจำเป็นเนื่องจากความเครียดยังคงอยู่ในโครงสร้างระหว่างการทำงานที่เย็น การทำงานในที่เย็นทำให้เกิดความเครียดที่ยืดหยุ่นได้ ดังนั้นการตกผลึกซ้ำจึงมีแนวโน้มที่จะเกิดขึ้น และแม้แต่การสัมผัสกับอุณหภูมิสูงเพียงชั่วคราวก็จะทำให้เกิดการตกผลึกซ้ำ ซึ่งเร่งการแตกตัวตามขอบเกรนในบริเวณที่มีอุณหภูมิต่ำ การตกผลึกซ้ำทำให้เกิดการหย่อนคล้อยเนื่องจากการเสียรูปของไส้หลอด

เกี่ยวกับการตกผลึกใหม่

การตกผลึกซ้ำ หมายถึงการก่อตัวและการเจริญเติบโตของเม็ดผลึกใหม่ ซึ่งแตกต่างอย่างสิ้นเชิงจากเม็ดผลึกที่เกิดจากการแปรรูป และไม่มีข้อบกพร่อง เช่น การเคลื่อนตัว เพื่อสร้างโครงสร้างเม็ดผลึกที่แตกต่างอย่างสิ้นเชิงจากโครงสร้างที่ผ่านกระบวนการ ถูกเรียก.
การตกผลึกใหม่เป็นกระบวนการที่แยกจากการนำกลับมาใช้ใหม่ ซึ่งธัญพืชใหม่จะถูกสร้างขึ้นล้อมรอบด้วยขอบเกรนมุมสูงที่ไม่มีข้อบกพร่อง เช่น ผนังเซลล์หรือการเคลื่อนตัว และเกรนเหล่านี้เติบโตโดยการกินเกรนที่อยู่ติดกัน ทำ. เมื่อเม็ดคริสตัลโตขึ้นและขอบเกรนเคลื่อนตัว ข้อบกพร่อง เช่น ผนังเซลล์และความคลาดเคลื่อนในเม็ดคริสตัลที่มีอยู่จะหายไป
เชื่อกันว่าผลึกใหม่เหล่านี้มีต้นกำเนิดมาจากที่ที่ความเครียดยืดหยุ่นกระจุกตัวอยู่ในโครงสร้างเกรนที่มีอยู่ (อินทราแกรนูลหรือขอบเกรน) นิวเคลียสของการตกผลึกซ้ำมีแนวโน้มที่จะเกิดขึ้นในวัสดุที่ทำงานเย็นซึ่งมีการทำงานระดับสูง ซึ่งสร้างความเครียดที่ยืดหยุ่นได้มาก และการตกผลึกซ้ำจะเริ่มต้นที่ 900 ถึง 1,000°C ยิ่งมีการสร้างนิวเคลียสที่ตกผลึกใหม่มากขึ้น ธัญพืชที่ตกผลึกใหม่ก็จะยิ่งมีมากขึ้นหลังจากการเจริญเติบโต ดังนั้นขนาดเกรนที่ตกผลึกใหม่จึงมีแนวโน้มที่จะเล็กลง ดังนั้น หากปรับปรุงความเหนียวที่อุณหภูมิต่ำโดยการปรับเม็ดคริสตัลให้ละเอียดโดยการทำงานเย็น การตกผลึกซ้ำจึงมีแนวโน้มที่จะเกิดขึ้น ดังนั้นแม้ว่าจะสัมผัสกับอุณหภูมิสูงชั่วคราว การตกผลึกซ้ำจะเกิดขึ้นและการเปราะบางของขอบเกรนจะส่งเสริมในบริเวณที่มีอุณหภูมิต่ำ ควรสังเกตว่าขดลวดไส้หลอดที่ทำจากลวดทังสเตนบริสุทธิ์จะเสียรูป (การเปลี่ยนรูปแบบคืบ) เนื่องจากแรงภายนอกเล็กน้อย เช่น น้ำหนักของตัวมันเอง เนื่องจากปรากฏการณ์เลื่อนที่ขอบเกรนที่ขยายออกไปในทิศทางรัศมีของไส้หลอดเมื่อใช้ที่สูง อุณหภูมิ เส้นใยที่ผิดรูปทำให้เกิดความร้อนสูงเกินไปในพื้นที่และมีแนวโน้มที่จะขาดการเชื่อมต่อ

เกี่ยวกับทังสเตนเจือ

“เพื่อเป็นการตอบโต้ มีวิธีเติมโพแทสเซียมโดยการเติมโพแทสเซียม (K) ซิลิกอน (Si) และอะลูมิเนียม (Al) ระหว่างกระบวนการโลหะผง ในระหว่างการอบชุบด้วยความร้อน ซิลิคอนและอะลูมิเนียมจะระเหย และโพแทสเซียมจะระเหยกลายเป็นทังสเตน ทำให้เกิด ฟองอากาศ ฟองอากาศเหล่านี้นำไปสู่การคงตัวของโครงสร้างจุลภาคและทำให้ยากต่อการตกผลึกซ้ำเกิดขึ้นไส้หลอดที่ใช้ในหลอดฮาโลเจนคือทังสเตนเจือ
คุณสมบัติยังเปลี่ยนไปตามปริมาณโพแทสเซียมที่เติม หากมีปริมาณมาก อุณหภูมิของการตกผลึกซ้ำจะสูงขึ้น แต่ความเหนียวที่อุณหภูมิต่ำจะลดลงและการประมวลผลจะยากขึ้น ด้วยวิธีนี้ คุณภาพและปริมาณมีความสำคัญต่อการรักษาประสิทธิภาพและคุณภาพ ”
อย่างไรก็ตาม หลังจากเวลาผ่านไปนาน ฟองที่เกิดจากการเติมสารนี้จะค่อยๆ รวมตัวกันและก่อตัวเป็นฟองขนาดใหญ่ภายในเส้นใย นี่เป็นปัจจัยที่จำกัดอายุการใช้งานของหลอดไฟ แต่ความดันสูงของก๊าซที่เติมในหลอดฮาโลเจนจะยับยั้งการเติบโตและการขยายตัวของฟองอากาศเหล่านี้ (รูสำหรับเติมสารสลบ) ในแง่นี้เชื่อว่าก๊าซปิดผนึกแรงดันสูงจะช่วยให้อายุการใช้งานของหลอดไฟยาวนานขึ้น นอกจากนี้ สิ่งเจือปนในฟองอากาศเหล่านี้จะปะทุออกมาในก๊าซที่เติมในหลอดไฟในที่สุด ทำให้สมดุลของฮาโลเจนของก๊าซที่เติมเสียไปและอาจทำให้เกิดการดำคล้ำได้ ซึ่งยับยั้งวัฏจักรฮาโลเจน) นี่เป็นหนึ่งในสาเหตุของการทำให้ดำคล้ำซึ่งเกิดขึ้นหลายร้อยชั่วโมงหลังจากเริ่มเปิดไฟ

การรักษาพื้นผิวของขดลวดทังสเตน

ขดลวดไส้หลอดอาจใช้งานได้ตามปกติโดยไม่ต้องผ่านกระบวนการปรับสภาพพื้นผิว แต่จะทำความสะอาดก่อนประกอบเข้ากับหลอดเพื่อขจัดสิ่งเจือปนและป้องกันการเกิดออกซิเดชัน สุดท้าย การบำบัดความร้อนในชั้นบรรยากาศจะดำเนินการโดยใช้ไฮโดรเจน
การทำความสะอาดโดยทั่วไปทำได้โดยการต้มขดลวดทังสเตนในสารละลายโซเดียมไฮดรอกไซด์ในน้ำ 10% (NaOH) ประมาณ 10 นาที หากจำเป็นต้องมีการกัดพื้นผิว การบำบัดด้วยกรดไฮโดรฟลูออริก (HF) 5% จะดำเนินการ และพื้นผิวจะถูกกัดกร่อนด้วยสารละลายน้ำด่างโพแทสเซียมเฟอร์ริไซยาไนด์ สุดท้าย ล้างออกให้สะอาดด้วยน้ำบริสุทธิ์
หลังจากนั้นจะมีการติดตัวยึด (ตัวยึดหรือตัวยึด) เข้ากับไส้ขดลวดและทำการเชื่อมฟอยล์โมลิบดีนัมและแท่งตะกั่วภายนอก หลังจากนั้น พื้นผิวอาจได้รับการบำบัดอีกครั้งด้วยสารละลายโซเดียมไฮดรอกไซด์ (NaOH) ที่เป็นน้ำ
สุดท้าย การบำบัดความร้อนในชั้นบรรยากาศจะดำเนินการโดยใช้ไฮโดรเจน ไฮโดรเจนมีวิธีการเผาไหม้โดยใช้ไฮโดรเจนแห้งและไฮโดรเจนเปียก