Category Archives: Basic knowledge of Halogen heater

เกี่ยวกับขดลวดไส้หลอด

ไส้หลอดใช้ทังสเตนซึ่งมีจุดหลอมเหลวสูงที่สุดในบรรดาโลหะ เพื่อลดการสูญเสียความร้อนเนื่องจากก๊าซฮาโลเจนแบบปิด จึงใช้ไส้หลอดขดแทนเส้นตรง เนื่องจากไส้หลอดอยู่ในกระเปาะที่เต็มไปด้วยก๊าซเฉื่อย จึงถูกปกคลุมด้วยก๊าซเฉื่อยและเกิดการสูญเสียความร้อน (อุณหภูมิลดลงในไส้หลอด) การสูญเสียความร้อนส่งผลต่อความยาวของไส้หลอด ดังนั้นให้ขดและปรับความยาวเพื่อลดการสูญเสียความร้อน ไส้หลอดแบบตรงจะโค้งงอเนื่องจากการขยายตัวทางความร้อนเมื่อเปิดใช้ แต่ด้วยการทำให้เป็นขดลวด มันจะยืดหยุ่นได้แม้ว่าจะขยายตัวเมื่อเปิด ดังนั้นมันจะกลับคืนสู่รูปร่างของขดลวดหลังจากปิดและสามารถคงรูปร่างไว้ได้
นอกจากนี้ เมื่อไส้หลอดถูกขด จะเกิดโพรงขึ้นภายในขดลวด และแสงที่ปล่อยออกมาจากช่องว่างระหว่างขดลวดจะใกล้เคียงกับการแผ่รังสีของวัตถุดำ
ลักษณะการแผ่รังสี (การแผ่รังสีสเปกตรัม) ของทังสเตนค่อนข้างสูงในบริเวณแสงที่มองเห็นได้ และการแผ่รังสีมีแนวโน้มที่จะค่อยๆ ลดลงเมื่อความยาวคลื่นเพิ่มขึ้น ดังนั้นที่อุณหภูมิเดียวกัน ประสิทธิภาพการส่องสว่างจึงสูงกว่าตัวกล้องสีดำอย่างมาก นี่เป็นหนึ่งในเหตุผลที่ทำให้ทังสเตนเหมาะเป็นวัสดุเส้นใยสำหรับให้แสงสว่าง แม้จะอยู่ในอุณหภูมิเดียวกัน ไส้หลอดคาร์บอนก็ใกล้เคียงกับสีดำ ดังนั้นประสิทธิภาพการส่องสว่างจึงต่ำกว่ามาก
ความต้านทานไฟฟ้าของทังสเตนมีขนาดค่อนข้างใหญ่

ในระหว่างการเปิดหลอดไฟ อุณหภูมิของฟิลาเมนต์ (2500~3200K) จะแสดงค่าความต้านทานที่สูงเมื่อเปรียบเทียบกับอุณหภูมิปกติ ซึ่งจะเหลือเพียง 1/10 ของค่าความต้านทาน นั่นคือ ในระหว่างเวลาหลอดไฟเปิด จะมีสถานการณ์กระแสรัชขนาดใหญ่ไหลผ่านในระยะเวลาสั้นๆ
กระแสรัชนี้จะทำให้อุณหภูมิของฟิลาเมนต์เพิ่มขึ้นอย่างรวดเร็ว และสามารถเปิดหลอดไฟให้สว่างขึ้นในระยะเวลาสั้นๆ อย่างไรก็ตาม กระแสรัชนี้มีผลต่ออายุการใช้งานของหลอดไฟ ในกรณีที่เปิดเครื่องทำความร้อน ควรเพิ่มแรงดันไฟฟ้าจากแหล่งจ่ายไฟให้เพิ่มขึ้นโดยทันทีที่เปิดเครื่อง

เกี่ยวกับวิธีการผลิตไส้หลอดแบบขดเดี่ยว

ลวดทังสเตนขดเป็นวงรอบแมนเดรล ในกรณีส่วนใหญ่ หลังจากพันรอบแมนเดรลแล้ว มันจะดีดตัวกลับและสามารถถอดแมนเดรลออกได้
ถ้าเส้นผ่านศูนย์กลางลวดทังสเตนคือ d และเส้นผ่านศูนย์กลางขดลวดคือ MD ดังนั้น MD/d≒3 จะเหมาะสม เมื่อ MD/d<2 จะเสียรูปได้ง่ายจากการขยายตัวทางความร้อน และเมื่อ MD/d>8 ความแข็งแรงจะอ่อนลง นอกจากนี้ หากระยะห่างของขดลวดเป็น P แสดงว่า P/d≒1.5 เหมาะสม ที่ P/d < 1.2 มีอันตรายจากการลัดวงจรระหว่างระดับเสียง ถ้า P/d > 1.8 การสูญเสียความร้อนจะมาก และเสียเปรียบในแง่ของประสิทธิภาพการส่องสว่าง
เพื่อความมั่นคงของมิติ หากใช้การอบชุบความร้อนขณะติดอยู่กับแมนเดรล แกนลวดจะไม่สามารถดึงออกมาได้ ในกรณีนี้ แกนลวดจะถูกละลายด้วยกรดและนำออก อย่างไรก็ตาม วิธีนี้ต้องใช้อุปกรณ์และค่าใช้จ่ายในการกำจัดก๊าซและสารละลายที่เกิดขึ้นระหว่างการละลาย
หากเส้นใยขดลวดที่ทำด้วยวิธีนี้มีการออกแบบที่แข็งแรง ก็สามารถทำเป็นโคมไฟได้ แต่ในหลายกรณี หลังจากทำไส้หลอดแล้วจะทำให้เสียรูป เว้นแต่การบิดเบี้ยวจะถูกกำจัดออกด้วยการอบชุบด้วยความร้อน นอกจากนี้ ขดลวดที่มีความแข็งแรงอ่อนกว่าจะถูกรวมเข้ากับหลอดไฟหลังจากผ่านกระบวนการทำให้เป็นผลึกซ้ำขั้นที่สอง

เกี่ยวกับวิธีการผลิตไส้หลอดแบบขดลวดคู่

วิธีการทั่วไปในการผลิตเส้นใยขดลวดคู่คือการพันลวดทังสเตนรอบลวดแกนโมลิบดีนัมที่ระยะพิทช์ที่กำหนดสำหรับขดลวดปฐมภูมิ หลังจากนั้น การบำบัดความร้อนจะดำเนินการหนึ่งครั้ง (ในเตาบรรยากาศไฮโดรเจนที่อุณหภูมิ 1,000°C ถึง 1600°C) วิธีนี้จะป้องกันไม่ให้สปริงกลับแม้ว่าคุณจะตัดม้วนต่อเนื่องให้สั้นลงก็ตาม
จากนั้นทำการม้วนที่สอง หลังจากพันรอบแกนแกนในระยะห่างที่กำหนดแล้ว ให้ดึงออก
ถัดไป หลังจากสร้างปลายให้เป็นรูปร่างตามอำเภอใจแล้ว จะมีการอบชุบด้วยความร้อนที่อุณหภูมิ 1600°C ถึง 1900°C (การให้ความร้อนในเตาบรรยากาศไฮโดรเจน การให้ความร้อนด้วยไฟฟ้ากระแสตรง ฯลฯ) หลังจากนั้น ลวดแกนโมลิบดีนัมจะถูกละลายและกำจัดออกด้วยกรดผสม (น้ำ 2 ส่วน: กรดไนตริก 2 ส่วน: กรดซัลฟิวริก 1 ส่วน) เพื่อผลิตเส้นใยขดลวดคู่
ในวิธีนี้ มีการสร้าง NOx จำนวนมาก สารละลายกรดตกค้าง เกลือโมลิบดีนัม ฯลฯ ในการกำจัดแกนลวดโมลิบดีนัม ดังนั้นอุปกรณ์กำจัดและล้างพิษจึงมีค่าใช้จ่ายสูง นอกจากนี้ เนื่องจากมีการใช้โมลิบดีนัมสำหรับลวดแกนปฐมภูมิ การอบชุบด้วยความร้อนที่อุณหภูมิสูงเกินไปจะทำให้โมลิบดีนัมแทรกซึมเข้าไปในทังสเตนและส่งผลเสียต่อหลอดฮาโลเจน
ดังนั้นการรักษาความร้อนสูงสุดคือประมาณ 1900°C และการตกผลึกซ้ำของทังสเตนจึงไม่สามารถทำได้อย่างสมบูรณ์ หากปล่อยไว้เช่นนี้ การตกผลึกซ้ำจะเกิดขึ้นทันทีที่เปิดหลอดไฟ และไส้หลอดอาจเสียรูป
เป็นวิธีการผลิตขดลวดคู่ที่ไม่มีข้อเสียของการตกผลึกทุติยภูมิของทังสเตนที่ไม่เพียงพอ ขดลวดปฐมภูมิ (ที่ถอดแกนลวดออก) จะมีรูปร่างเป็นขดลวดคู่ด้วยวิธีบางอย่างและผ่านการอบด้วยความร้อนที่อุณหภูมิ 2200°C มีวิธีทำไส้หลอดแบบขดสองเส้น
ในฐานะที่เป็นวิธีการสร้างรูปทรงขดลวดสองชั้นนี้ แท่งทังสเตนที่บางกว่าลวดแกนหลักเล็กน้อยจะถูกสร้างเป็นรูปทรงแผลทุติยภูมิ . เป็นวิธีการชุบแข็งด้วยกรรมวิธีทางความร้อน หลังจากการอบชุบด้วยความร้อน แกนแกนขดของทังสเตนจะถูกดึงออกมาและนำกลับมาใช้ใหม่
อย่างไรก็ตาม วิธีนี้ไม่สามารถใช้งานได้หลากหลาย และเป็นการยากที่จะใช้เครื่องจักรเป็นวิธีการผลิตจำนวนมาก และมีคอยล์คู่ที่ทำได้ยาก

 

ประเภทและกลไกของหลอดฮาโลเจน

หลอดฮาโลเจนชนิดแก๊ส

หลอดฮาโลเจนเป็นหลอดไส้ที่บรรจุก๊าซเฉื่อยและก๊าซฮาโลเจนจำนวนเล็กน้อยไว้ในหลอด

ก๊าซเฉื่อย

ก๊าซเฉื่อย ได้แก่ ฮีเลียม (He 4.00g/mol) นีออน (Ne 20.18g/mol) (ไนโตรเจน (N2 28.02/mol)) อาร์กอน (Ar 39.95g/mol) (คาร์บอนไดออกไซด์ (CO2 44.01g/mol) โมล)), คริปทอน (Kr 83.80/mol), ซีนอน (Xe 131.29g/mol) และเรดอน (Rn 222.000/mol)
ฮีเลียม นีออน อาร์กอน คริปทอน ซีนอน และเรดอน เรียกอีกอย่างว่าก๊าซมีตระกูลและก๊าซหายาก เพราะพวกมันมีอยู่ในอากาศในปริมาณที่น้อยมาก
ผลการยับยั้งไอของทังสเตนที่ใช้ในเส้นใยมีประสิทธิภาพมากขึ้นเมื่อน้ำหนักอะตอมเพิ่มขึ้น ยิ่งน้ำหนักอะตอมสูง ค่าการนำความร้อนยิ่งต่ำ และยิ่งลดการสูญเสียความร้อนของไส้หลอดได้มากเท่านั้น ประสิทธิภาพการส่องสว่างจะเพิ่มขึ้น 5-10%
“ตามทฤษฎีแล้ว เรดอนซึ่งมีน้ำหนักอะตอมสูงที่สุดมีประสิทธิภาพมากที่สุด อย่างไรก็ตาม เรดอนเป็นก๊าซกัมมันตภาพรังสีที่เป็นอันตรายซึ่งปล่อยรังสีแอลฟาออกมาโดยมีครึ่งชีวิตสั้น ดังนั้นจึงไม่สามารถนำมาใช้ได้ เมื่อก๊าซคาร์บอนไดออกไซด์มีอุณหภูมิสูงถึง 1,000°C หรือ สูงขึ้นจะสลายตัวเป็นคาร์บอนมอนอกไซด์และออกซิเจน ใช้ไม่ได้ เนื่องจากการสลายตัวด้วยความร้อน
ดังนั้นจึงอาจกล่าวได้ว่าซีนอนมีประสิทธิภาพสูงสุดในการระเหยทังสเตน
อย่างไรก็ตาม เนื่องจากซีนอนและคริปทอนมีราคาแพง จึงไม่ค่อยได้ใช้มากนัก และใช้อาร์กอนซึ่งมีราคาถูกกว่าก๊าซเฉื่อยอื่นๆ ”
อย่างไรก็ตาม อาร์กอนเพียงอย่างเดียวไม่ได้ให้ฉนวนไฟฟ้าที่เพียงพอ ดังนั้นหากไส้หลอดขาดระหว่างการให้แสงสว่าง จะเกิดอาร์คดิสชาร์จ เพื่อเป็นการตอบโต้ จะมีการผสมไนโตรเจนจำนวนเล็กน้อยซึ่งมีความเป็นฉนวนไฟฟ้าสูง . หลอดไฟขนาดเล็กที่มีไส้หลอดสั้นกว่าจะมีโหลดไฟฟ้าสูงกว่า ส่งผลให้อายุการใช้งานสั้นลง

ทะเยอทะยาน

เก็ตเตอร์เป็นสารเคมีที่ใช้ในการกำจัดสิ่งเจือปนออกจากผลิตภัณฑ์ที่ใช้สุญญากาศ
สำหรับหลอดไส้ หากมีความชื้น ออกซิเจน หรือสิ่งสกปรกอื่นๆ ปะปนอยู่ในหลอดไฟเพียงเล็กน้อย จะทำให้เกิดวัฏจักรของน้ำ ซึ่งจะกินทังสเตนและทำให้อายุการใช้งานของหลอดไฟสั้นลง ดังนั้นจึงจำเป็นต้องถอดน้ำออก ภายในหลอดไฟ มีการวิจัยและพัฒนา getters ต่างๆเพื่อเป็นมาตรการตอบโต้ หลอดไส้ใช้วิธีการสร้างสุญญากาศโดยใช้ตัวรับฟอสฟอรัสในระหว่างกระบวนการผลิต ในวิธีนี้ ไส้หลอดทังสเตนจะถูกจุ่มลงในส่วนผสมของฟอสฟอรัสและน้ำ และหลังจากที่หลอดไฟหมด ไฟฟ้าจะถูกนำไปใช้เพื่อสร้างการปลดปล่อยแสงและกำจัดก๊าซที่ตกค้าง ฟอสฟอรัสเก็ตเตอร์ใช้เพื่อเพิ่มระดับของสุญญากาศ และธาตุฮาโลเจนยังถูกปิดล้อมเป็นเก็ตเตอร์เพื่อป้องกันการทำให้ดำคล้ำ
วิธีการลดการเกิดสีดำโดยใช้ธาตุฮาโลเจนเป็นตัวรับถูกใช้มาเป็นเวลานาน และในปี พ.ศ. 2435 ได้มีการวางจำหน่ายหลอดไฟไส้หลอดคาร์บอนที่มีคลอรีน ในปี 1933 มีการเสนอสิทธิบัตรสำหรับแนวคิดในการห่อหุ้มไอโอดีนเพื่อเปลี่ยนทังสเตนที่ระเหยกลายเป็นไอโอไดด์ของทังสเตนเพื่อป้องกันไม่ให้เกาะติดกับหลอดไฟ ด้วยวิธีนี้ วิธีการห่อหุ้มสารประกอบฮาโลเจนในหลอดไฟทั่วไปมีประสิทธิภาพในการป้องกันไม่ให้หลอดไฟดำคล้ำ แต่จะทำปฏิกิริยากับไส้หลอดทังสเตนในส่วนที่มีอุณหภูมิต่ำ ทำให้อายุการใช้งานของหลอดไฟสั้นลง ฉันทำ. นอกจากนี้ ไอโอดีนจำเป็นต้องระเหยและใส่เข้าไปในหลอดไฟในระหว่างการผลิต และมีข้อเสีย เช่น ช่วงแคบที่วัฏจักรฮาโลเจนทำงานได้อย่างเสถียร ดังนั้นจึงมีการพิจารณาก๊าซฮาโลเจนอื่นๆ ในปี พ.ศ. 2508 ที’ Jampens และ van der Weijer จาก Philips ได้แนะนำหลอดไฟที่ใช้สารประกอบอินทรีย์ของโบรมีน สารประกอบโบรมีน (CHBr3, CH2Br2 ฯลฯ) มีความดันไอสูง จึงสามารถปิดล้อมเป็นก๊าซได้ ต่อมาก็มีการใช้สารประกอบคลอรีนและใช้ในหลอดเปิดรับแสงของเครื่องถ่ายเอกสาร
เซอร์โคเนียมักใช้เป็นส่วนประกอบในหลอดไฟ อย่างไรก็ตาม ในกรณีของเครื่องทำความร้อนหลอดฮาโลเจน วิธีนี้ใช้ยาก ดังนั้นจึงมักใช้แทนทาลัม (Ta) แทนทาลัมเป็นโลหะอ่อนที่หลอมละลายสูงคล้ายกับตะกั่ว และดูดซับไฮโดรเจนหลายร้อยเท่าของปริมาตรในสถานะความร้อนสีแดงเข้ม (ประมาณ 700°C) ฉันอยู่นี่.
แน่นอนว่าเครื่องทำความร้อนหลอดไฟบางรุ่นที่มีฮาโลเจนต่ำกว่า 2200K หากเติมฮาโลเจนเข้าไป มันจะทำงานในทิศทางที่ขัดขวางวัฏจักรของน้ำ ดังนั้นหากมีความชื้นหลงเหลืออยู่เพียงเล็กน้อย ก็สามารถสร้างฮีตเตอร์ที่มีอายุการใช้งานยาวนานได้ นี่เป็นเพราะฮาโลเจนมีราคาถูกกว่า เพื่อสร้างฮีตเตอร์หลอดไฟที่มีความน่าเชื่อถือสูงโดยมีอายุการออกแบบตั้งแต่ 5,000 ชั่วโมงถึง 20,000 ชั่วโมง การใส่เกตเตอร์โดยไม่ใช้ฮาโลเจนจึงปลอดภัยกว่าการใส่ฮาโลเจน

ก๊าซฮาโลเจน

มีก๊าซฮาโลเจนอยู่ 4 ประเภท ได้แก่ ฟลูออรีน (F 19.00 ก./โมล) คลอรีน (CL 35.45/โมล) โบรมีน (Br 79.90 ก./โมล) และไอโอดีน (I 126.90 ก./โมล) ยิ่งน้ำหนักอะตอมน้อยเท่าไร ไอโอดีนที่มีปฏิกิริยามากกว่าคือปฏิกิริยาน้อยที่สุดเนื่องจากมีปฏิกิริยามากกว่าในยุคแรก ๆ ของหลอดฮาโลเจน ไอโอดีนถูกล้อมรอบด้วยสารฮาโลเจน อย่างไรก็ตาม ไอโอดีนมีข้อเสีย เช่น ความจำเป็นในการระเหยและใส่เข้าไปในหลอดไฟในระหว่างการผลิต และช่วงที่วงจรฮาโลเจนทำงานได้อย่างเสถียรนั้นแคบ ใช้สำหรับ”
โบรมีนมีปฏิกิริยามากกว่าไอโอดีน และมีส่วนช่วยให้วงจรฮาโลเจนมีประสิทธิภาพ
แม้ในกรณีที่วัฏจักรฮาโลเจนของไอโอดีนไม่สามารถจัดการกับการระเหยและการทำให้ดำของทังสเตนได้ วัฏจักรฮาโลเจนก็สามารถจัดการกับมันได้ และมันเป็นไปได้ที่จะขยายประเภทของหลอดฮาโลเจน
มีความแปรปรวนเมื่อวัฏจักรฮาโลเจนจบลงด้วยการที่ทังสเตนกลับคืนสู่ไส้หลอด การระเหยได้รับการส่งเสริมในพื้นที่ อุณหภูมิของชิ้นส่วนนั้นเพิ่มขึ้นในอัตราเร่ง และการตัดการเชื่อมต่อเกิดขึ้นที่จุดร้อน
อาจมีสีดำเกิดขึ้นขึ้นอยู่กับปริมาณของก๊าซฮาโลเจน จำเป็นต้องเติมก๊าซฮาโลเจนในปริมาณขั้นต่ำที่ไม่ทำให้เกิดการใส่ร้ายป้ายสี ด้วยการลดปริมาณก๊าซฮาโลเจนให้น้อยที่สุด วัฏจักรฮาโลเจนจะถูกควบคุม ส่งผลให้อายุของหลอดไฟยาวนานขึ้นและมีความเสถียร ความเข้มข้นขั้นต่ำที่ต้องการคือประมาณ 0.1% โมลาร์ถึงก๊าซเฉื่อย
เครื่องทำความร้อนหลอดไฟที่มีอุณหภูมิสีประมาณ 2200K (K → เคลวิน: หน่วยของอุณหภูมิสัมบูรณ์ บวก 273 องศาเซลเซียส) หรือน้อยกว่านั้นไม่จำเป็นต้องมีฮาโลเจน ที่อุณหภูมิสีดังกล่าว การระเหยของทังสเตนจะไม่สำคัญเลยภายในอายุที่กำหนดของเครื่องทำความร้อน (5,000 หรือ 20,000 ชั่วโมง) และไม่จำเป็นต้องใช้วงจรฮาโลเจน (ดังนั้นใยจึงสึกน้อยมาก -> อายุการใช้งานไม่จำกัด)

วงจรฮาโลเจน

หลอดฮาโลเจนเป็นหลอดไฟประเภทหนึ่งซึ่งบรรจุก๊าซฮาโลเจนจำนวนเล็กน้อยไว้ในก๊าซเฉื่อย เช่น อาร์กอนหรือไนโตรเจน
การปิดแก๊สฮาโลเจนทำให้สามารถป้องกันการสึกหรอของทังสเตนซึ่งเป็นวัสดุของไส้หลอดได้และยังสามารถเพิ่มอุณหภูมิของไส้หลอดให้มีอุณหภูมิสูงขึ้นได้ มีประโยชน์ นี่เป็นเพราะวงจรฮาโลเจน ไส้หลอดทังสเตนจะร้อนขึ้นในขณะที่หลอดไฟเปิดอยู่ ระเหยกลายเป็นอะตอมและเคลื่อนที่ภายในหลอดไฟ ขณะที่เดินทาง มันจะรวมตัวกับฮาโลเจนในหลอดไฟเพื่อสร้างทังสเตนเฮไลด์ ทังสเตนฮาไลด์เคลื่อนที่เข้าใกล้ไส้หลอดด้วยการพาความร้อนและการแพร่กระจาย เมื่อไส้หลอดร้อนขึ้นระหว่างการให้แสง ทังสเตนฮาไลด์จะแยกตัวเมื่ออุณหภูมิสูงถึง 1,400°C หรือสูงกว่า และทังสเตนจะกลับคืนสู่ไส้หลอด และฮาโลเจนจะระเหยอีกครั้งและก่อตัวเป็นทังสเตนฮาไลด์ วัฏจักรนี้เรียกว่าวัฏจักรฮาโลเจน
ในการทำให้เกิดวงจรฮาโลเจน จำเป็นต้องใช้วัสดุที่ช่วยให้ผนังด้านในของหลอดไฟมีอุณหภูมิสูงกว่า 250°C ระหว่างการจุดไฟ ดังนั้นจึงใช้แก้วควอทซ์ทนความร้อนสำหรับหลอดไฟ
ทังสเตนที่ระเหยแล้วกลับคืนสู่ไส้หลอด แต่ไม่สมบูรณ์ มีความแปรปรวนเมื่อวัฏจักรฮาโลเจนจบลงด้วยการที่ทังสเตนกลับคืนสู่ไส้หลอด การระเหยได้รับการส่งเสริมในพื้นที่ อุณหภูมิของชิ้นส่วนนั้นเพิ่มขึ้นในอัตราเร่ง และการตัดการเชื่อมต่อเกิดขึ้นที่จุดร้อน วงจรฮาโลเจนซ้ำๆ ทำให้เกิดความไม่สม่ำเสมอในไส้หลอด ซึ่งในที่สุดจะทำให้ลวดขาด

W+(Om+Xn) →(WX+WO+WOX+WO2+X2)→WX→W+O

อัดแก๊สแรงดันสูงเข้าหลอดไฟ

ยิ่งแรงดันแก๊สเติมสูงเท่าใด อายุการใช้งานของหลอดไฟก็จะยาวนานขึ้นเมื่อเทียบกับประสิทธิภาพ ความดันจะเพิ่มความหนาแน่นของโมเลกุลของก๊าซ การระเหยของทังสเตนจะชนกับโมเลกุลของก๊าซ และการเคลื่อนตัวของทังสเตนจะถูกระงับ ความดันไอรอบเส้นใยเพิ่มขึ้นและใกล้ถึงจุดอิ่มตัว ดังนั้นการระเหยจึงถูกระงับ
ในฐานะที่เป็นวิธีการเติมก๊าซลงในหลอดฮาโลเจน จะใช้หลอดไฟที่มีการเชื่อมท่อแก้วไอเสีย และหลังจากที่ด้านในของหลอดไฟถูกไล่ออกแล้ว ก๊าซที่ปิดสนิทจะถูกเติมในขณะที่ทำให้เย็นลงด้วยไนโตรเจนเหลว ก๊าซที่เติมจะถูกทำให้เป็นของเหลวโดยไนโตรเจนเหลว ปริมาตรลดลง และความดันภายในลดลง
เติมก๊าซที่ความดันสูง 1×10^5~4×10^5Pa ความดันระหว่างแสงสูงถึง 1.3 ถึง 7.0 เท่า
 

กระบวนการพัฒนาที่นำไปสู่หลอดฮาโลเจน

การพัฒนาเส้นใยคาร์บอน

หลอดฮาโลเจนพัฒนามาจากหลอดไส้ เส้นใยคาร์บอนถูกนำมาใช้สำหรับเส้นใยของหลอดไฟที่ให้ความร้อนในยุคแรกๆ เส้นใยโลหะเช่นออสเมียมและแทนทาลัมกำลังได้รับการพัฒนา แต่ไม่ได้ใช้กันอย่างแพร่หลายเนื่องจากราคาและปัญหาเกี่ยวกับแสงกระแสสลับ ดร. ดับบลิว อาร์ วิทนีย์ จากสหรัฐอเมริกาค้นพบว่าการทำให้หลอดไฟเป็นสีดำไม่ได้เกิดจากคาร์บอนที่ระเหยเท่านั้น แต่ยังเกิดจากเถ้าออกไซด์บางชนิดด้วย เพื่อเป็นมาตรการรับมือ การบำบัดด้วยความร้อนได้ดำเนินการที่อุณหภูมิสูงกว่าอุณหภูมิการทำงานของเส้นใยมาก เพื่อลดแอชออกไซด์และยับยั้งการทำให้ดำคล้ำตลอดอายุการใช้งาน การอบชุบด้วยความร้อนนี้ทำให้พื้นผิวของเส้นใยแข็งและแข็งแรง ทำให้มีคุณสมบัติคล้ายโลหะ และอุณหภูมิในการทำงานเพิ่มขึ้น 200°C ทำให้สามารถใช้งานได้ถึง 1900°C แม้ว่าคาร์บอนจะมีจุดหลอมเหลวสูงประมาณ 3,500°C แต่ไม่สามารถใช้ที่อุณหภูมิสูงได้เนื่องจากความดันไอสูงและการระเหยอย่างรวดเร็ว (การระเหิด) หลอดไส้ไส้คาร์บอนที่ผ่านการอบด้วยความร้อนนี้เป็นกระแสหลักจนกระทั่งมีการพัฒนาหลอดไส้ทังสเตน

การประดิษฐ์เส้นใยทังสเตน

ตั้งแต่นั้นเป็นต้นมา เส้นใยใหม่นอกเหนือจากคาร์บอนได้รับการพัฒนาอย่างต่อเนื่อง และทังสเตนซึ่งมีจุดหลอมเหลว 3360°C ก็ได้รับความสนใจ มีความพยายามที่จะเปลี่ยนทังสเตนเป็นของแข็งหรือจากผงเป็นเส้นใย แต่ก็ไม่เป็นจริง ในปี 1905 A.Just และ F.Hanaman จากออสเตรเลียจัดการทังสเตนทางเคมีเพื่อผลิตได้สำเร็จ ทำให้เราได้รับประสิทธิภาพของคาร์บอนเป็นสองเท่า แต่มีข้อเสียตรงที่ไส้หลอดนั้นเปราะบางและจัดการยาก ในปี 1908 W. Dcoolidge ค้นพบว่าความแข็งแรงเชิงกลของทังสเตนได้รับการปรับปรุงโดยการใช้การประมวลผลประเภทต่างๆ เพื่อแก้ปัญหาความเปราะบางของทังสเตน

การประดิษฐ์หลอดไฟเติมแก๊ส

ปรากฏการณ์การดำคล้ำเกิดขึ้นในหลอดทังสเตนและไส้หลอดคาร์บอน I.Langmuir จากสหรัฐอเมริกาค้นพบว่าปรากฏการณ์สีดำของหลอดไฟเกิดจากการระเหยของไส้หลอดทังสเตน และพบว่าปริมาณการระเหยสามารถลดลงได้โดยการใส่ก๊าซเฉื่อยไว้ภายในหลอดไฟ นอกจากนี้ยังพบว่าก๊าซเฉื่อยทำให้ไส้หลอดถูกห่อหุ้มด้วยชั้นของก๊าซเฉื่อย ทำให้เกิดการสูญเสียความร้อน สรุปได้ว่าหลอดไฟที่เติมก๊าซจะสร้างการสูญเสียพลังงานเนื่องจากการนำความร้อนและการพาความร้อน แต่จะยับยั้งการระเหยของทังสเตน ปรากฎว่ามีความเป็นไปได้ที่จะมีขนาดใหญ่ขึ้นและมีประสิทธิภาพมากขึ้นในท้ายที่สุด เนื่องจากการสูญเสียความร้อนนี้ส่งผลต่อความยาวของไส้หลอด เราจึงประสบความสำเร็จในการลดการสูญเสียความร้อนโดยการเปลี่ยนไส้หลอดจากแบบเส้นตรงเป็นรูปทรงขด และหลอดบรรจุแก๊สแบบม้วนเดียวก็ถือกำเนิดขึ้น ในยุคแรกนั้นใช้ไนโตรเจนเป็นก๊าซเฉื่อย หลังจากนั้น อาร์กอนซึ่งมีค่าการนำความร้อนต่ำและมีน้ำหนักโมเลกุลมาก (ผลการยับยั้งการระเหยสูง) โดยมีไนโตรเจนจำนวนเล็กน้อยอยู่ในนั้น กลายเป็นกระแสหลัก

การประดิษฐ์ไส้หลอดแบบขดลวดคู่

ในปี 1921 Junichi Miura ได้คิดค้นไส้หลอดแบบขดลวดคู่ที่เพิ่มประสิทธิภาพด้วยการม้วนไส้หลอดแบบขดลวดเดียวอีกครั้ง ในตอนแรกไส้หลอดแบบขดลวดคู่นั้นถูกวางในแนวตั้งฉากกับกระเปาะ แต่พบว่าการวางในแนวตั้งทำให้สูญเสียความร้อนน้อยลงและประสิทธิภาพเพิ่มขึ้น 5%

การประดิษฐ์หลอดฮาโลเจน

ในปี 1959 ชาวอเมริกัน E.G.Zebler ได้คิดค้นหลอดฮาโลเจน หลอดไฟฮาโลเจนมีลักษณะการทำงาน (อัตราการรักษาความเร็วแสงตลอดอายุการใช้งาน) แทบจะไม่เปลี่ยนแปลง การใช้ธาตุฮาโลเจนได้รับการวิจัยในปี พ.ศ. 2458 แต่ไม่ได้ทำการค้าเนื่องจากขาดการชี้แจงทางอุณหพลศาสตร์และเทคโนโลยีการประมวลผลแก้วควอทซ์ ก๊าซฮาโลเจนที่อยู่ในหลอดไฟจะแยกตัวออกเป็นอะตอมที่อุณหภูมิสูง และรวมตัวกับทังสเตนที่ระเหยกลายเป็นไอเพื่อสร้างทังสเตนฮาไลด์ที่มีความดันไอสูง ป้องกันไม่ให้ทังสเตนระเหยที่พื้นผิวด้านในของหลอดแก้ว กำลังทำอยู่ หากเก็บหลอดไฟไว้ภายในช่วงอุณหภูมิที่สารประกอบทังสเตนไม่กลายเป็นไอและแตกตัวด้วยความร้อน จะไม่เกิดสีดำ นอกจากนี้ เมื่อไส้หลอดร้อนขึ้นระหว่างการให้แสง ทังสเตนฮาไลด์จะแยกตัวออกเมื่ออุณหภูมิสูงถึง 1,400°C หรือสูงกว่า และทังสเตนจะกลับคืนสู่ไส้หลอด ดังนั้นเราจึงสามารถลดการสึกหรอของไส้หลอดได้ เพื่อให้เป็นไปตามเงื่อนไขเหล่านี้ จำเป็นต้องมีขนาดที่เล็กและผลผลิตสูง และใช้แก้วควอทซ์ทนความร้อนสำหรับหลอดแก้ว หลอดไฟฮาโลเจนซึ่งใช้งานจริงในปี 1959 เป็นหลอดไฟแบบสองขั้วที่เติมไอโอดีนและประกาศให้ใช้ฟลัดไลท์ เมื่อเร็ว ๆ นี้โบรมีนถูกปิดล้อมเพื่อรักษาเสถียรภาพของลักษณะชีวิต หลังจากนั้นจึงได้ปรับปรุงประเภทขั้วคู่และพัฒนาหลอดไฟประเภทขั้วเดี่ยว หลอดฮาโลเจนและหลอดไส้สำหรับให้แสงสว่างทั่วไปกำลังเลิกใช้ในยุโรป ค
 

การทำความร้อนพื้นผิวบริเวณกว้างโดยใช้ฮีตเครื่องทำความร้อนเส้นฮาโลเจน

ด้วยการจัดเรียงประเภทการทำความร้อนหลายแนวและการตั้งค่าความยาวโฟกัสให้ห่างจากระยะห่างที่กำหนด จึงสามารถขยายความกว้างโฟกัสได้ และสามารถรับความร้อนได้หลากหลาย (หลุดโฟกัส)

แน่นอนว่าเป็นไปได้ที่จะให้ความร้อนในพื้นที่กว้างโดยการจัดเรียงประเภทการทำความร้อนพื้นผิวหลายหน่วยในลักษณะเดียวกัน
ประเภทการทำความร้อนที่พื้นผิวจะไม่เปลี่ยนความกว้างโฟกัสของเครื่องทำความร้อนแม้ว่าระยะห่างจะเพิ่มขึ้น ดังนั้นจึงมีประสิทธิภาพเมื่อคุณไม่ต้องการให้ความร้อนสิ่งอื่นนอกเหนือจากวัตถุที่จะให้ความร้อน
หากคุณต้องการให้ความร้อนในพื้นที่กว้างกว่าความกว้างของกระจกคอนเดนเซอร์ ให้เลือกประเภทการทำความร้อนแบบเส้น

มีสองสิ่งที่ควรทราบ

1.แม้ว่าความกว้างโฟกัสจะเท่ากัน แต่ความยาวโฟกัสก็จะสั้นลง อุณหภูมิก็จะยิ่งสูงขึ้นเท่านั้น

2.ปลายทั้งสองของกระจกคอนเดนเซอร์ถูกยกขึ้น ดังนั้นอุณหภูมิจึงต่ำ ส่วนที่ให้ความร้อนคงที่คือความยาวไม่รวมปลายทั้งสองข้าง

 

อายุการใช้งานของเครื่องทำความร้อนเส้นฮาโลเจน

อายุการใช้งานของหลอดฮาโลเจนจะแตกต่างกันไปตามแรงดันไฟฟ้าที่ใช้
หากแรงดันไฟฟ้าที่กำหนดกำหนดไว้ที่ 100% การลดแรงดันไฟฟ้าลง 10% จะยืดอายุการใช้งานได้ประมาณ 3 เท่า และเพิ่มแรงดันไฟฟ้าขึ้น 10% จะทำให้อายุการใช้งานสั้นลงประมาณ 1/3

นอกจากนี้กระแสรัชเมื่อเปิดเครื่องทำความร้อนฮาโลเจนจะส่งผลให้อายุการใช้งานของหลอดแสงสั้นลงด้วย ความต้านทานไฟฟ้าขณะเครื่องทำความร้อนฮาโลเจนถูกปิดคือประมาณ 1/10 ถึง 1/20 ของเวลาเปิดใช้งาน เหตุแต่ตามกฎว่าด้วยโอห์ม ในเวลาที่เปิดใช้งานเพิ่งเริ่ม กระแสรัชประมาณ 10-20 เท่าของกระแสปกติจะเกิดขึ้น

หากทำการทำงานแบบกระพริบสับครั้งละบ่อย แนะนำให้ลดแรงดันไฟจากแหล่งจ่ายไฟเป็นเวลา 2 วินาทีหากเป็นไปได้ ช่วงเวลาการลดความเร็วในการขึ้นแรงของกระแสไฟฟ้าคือ อย่างน้อย 1 วินาทีสำหรับแหล่งจ่ายไฟกระแสตรง (DC) และอย่างน้อย 2 วินาทีสำหรับแหล่งจ่ายไฟกระแสสลับ (AC) ขนาดใหญ่

การเปลี่ยนการควบคุมแหล่งจ่ายไฟจากการควบคุมเปิด-ปิดเป็นการควบคุมระดับสูง-ต่ำจะทำให้อายุการใช้งานของหลอดแสงสั้นเพิ่มขึ้นในกระบวนการทำงานแบบกระพริบสับ

อายุการใช้งานของหลอดฮาโลเจนถูกกำหนดโดยส่วนประกอบที่ประกอบเป็นหลอด
อายุการใช้งานส่วนใหญ่เกิดจากไส้หลอดหรือซีลแตก

อายุไส้หลอดถูกกำหนดตามสัดส่วนของอุณหภูมิไส้หลอด (อุณหภูมิสี)
ประมาณ 1,000 ชั่วโมงที่ 3000K และประมาณ 200-300 ชั่วโมงที่ 3200K
เมื่ออุณหภูมิสีต่ำกว่า 3000K มาก อายุการใช้งานจะคำนวณได้ยาวนานมาก
แม้ว่าอายุการใช้งานของเส้นใยที่คำนวณได้จะยาวนาน แต่จะไม่เป็นไปตามที่คำนวณไว้เนื่องจากปัจจัยอื่นๆ
เพื่อเป็นแนวทาง จะใช้ค่าประมาณ 5,000 ชั่วโมงที่ 2600K และประมาณ 20,000 ชั่วโมงที่ 2200K

นอกจากไส้หลอดแล้ว ส่วนของซีลยังเกี่ยวข้องกับอายุการใช้งานของหลอดไฟอีกด้วย
หากอุณหภูมิของชิ้นส่วนซีลเกิน 300°C สาเหตุของอายุการใช้งานจะเปลี่ยนไปที่ชิ้นส่วนซีล
เนื่องจากอุณหภูมิทนความร้อนของซีลหลอดฮาโลเจนอยู่ที่ 300°C
หากใช้หลอดไฟอย่างต่อเนื่องโดยไม่ทำให้เย็นลง อุณหภูมิของชิ้นส่วนซีลจะเกิน 300°C และหลอดฮาโลเจนจะเสียหาย
หลีกเลี่ยงการใช้งานที่ขีดจำกัดอุณหภูมิทนความร้อน และต้องแน่ใจว่าเย็นลงแล้ว


 

การระบายความร้อนขอเครื่องทำความร้อนเส้นฮาโลเจน

การใช้งานเครื่องทำความร้อนเส้นฮาโลเจนโดยต่อเนื่องจำเป็นต้องมีการระบายความร้อนอย่างเสมอเป็นสิ่งสำคัญ
อุณหภูมิทนความร้อนของส่วนซีลของหลอดฮาโลเจนคือ 300 องศาเซลเซียส
หากใช้งานโดยไม่ได้รับการระบายความร้อนอย่างเสมอ อุณหภูมิของส่วนซีลจะเกิน 300 องศาเซลเซียส ทำให้หลอดฮาโลเจนเสียหาย
นอกจากนี้ เมื่อทำการเรียกร้องความร้อน เครื่องทำความร้อนเส้นฮาโลเจนทั้งหมดก็จะมีอุณหภูมิสูง
ควรหลีกเลี่ยงการใช้งานในอุณหภูมิที่ใกล้เคียงกับขีดจำกัดของอุณหภูมิทนความร้อน และจำเป็นต้องระบายความร้อนอย่างถูกต้อง
เมื่อให้ความร้อนที่อุณหภูมิสูง จะส่งผลต่อความเสียหายของซีลหลอดฮาโลเจนและการเสื่อมสภาพของตัวหลัก ซึ่งจะทำให้อายุการใช้งานสั้นลง ดังนั้นโปรดแน่ใจว่าได้ทำให้เย็นลงแล้ว ขอแนะนำให้ผู้ควบคุมมีการป้องกัน เช่น การปิดเครื่องทำความร้อนหากการทำความเย็นถูกขัดจังหวะ

มีจุดระบายความร้อนสองจุดสำหรับเครื่องทำความร้อนเส้นฮาโลเจน, กระจกคอนเดนซิ่งและซีลหลอดไฟ

ประเภทระบายความร้อนกระจกคอนเดนซิ่ง

มีวิธีระบายความร้อนสองประเภทสำหรับกระจกคอนเดนซิ่ง : แบบติดตั้งพัดลมระบายความร้อนและแบบระบายความร้อนด้วยน้ำ

(1) ประเภทที่ระบายความร้อนด้วยพัดลมระบายความร้อน
สามารถใช้เครื่องควบคุมเครื่องทำความร้อนเพียงอย่างเดียว
พลังงานของพัดลมระบายความร้อนมาจากเครื่องควบคุมเครื่องทำความร้อน สภาพแวดล้อมการใช้งานถูกสมมุติในอุณหภูมิห้อง

(2) ประเภทที่ระบายความร้อนด้วยน้ำเย็น
ต้องการเครื่องควบคุมเครื่องทำความร้อนและเครื่องทำความเย็น (น้ำเย็น) แต่สามารถใช้งานในบริเวณห้องกลวงได้
อัตราการไหลของน้ำเย็นที่ต่ำที่สุดเป็นประมาณ 0.5L/นาที ต่อ 1kW ของพลังงานเครื่องทำความร้อน แต่เราขอแนะนำให้มากกว่าสองเท่าเพื่อความปลอดภัย
สมมุติว่าอุณหภูมิของน้ำเย็นประมาณ 15℃ หากอุณหภูมิของน้ำเย็นต่ำเกินไป อาจมีความเสี่ยงที่จะเกิดการรั่วไฟฟ้าจากการละอองหรือหยดน้ำที่เกิดจากการแข็งตัวจากความชื้น ความดันที่สมมุติไว้คือไม่เกิน 200kPa หากเกิน 300kPa โปรดติดต่อเราเพิ่มเติม

3 รุ่น HLH-55, HLH-60 และ HLH-65 ประกอบด้วยกระจกคอนเดนเซอร์ 2 ชุด และสามารถเลือกเส้นทางการระบายความร้อนด้วยน้ำแบบอนุกรมหรือแบบขนานได้
สำหรับ 6 กิโลวัตต์หรือน้อยกว่า ให้เลือกเส้นทางการระบายความร้อนด้วยน้ำแบบอนุกรม
สำหรับ 6 กิโลวัตต์ขึ้นไป ให้เลือกเส้นทางการระบายความร้อนด้วยน้ำแบบขนาน

วิธีการระบายความร้อนของชิ้นส่วนซีลหลอดไฟคือการระบายความร้อนด้วยอากาศอัด

ต้องแน่ใจว่าเย็นลงเมื่อให้ความร้อนที่อุณหภูมิสูงตลอดเวลา

 

ความกว้างโฟกัสและความยาวโฟกัสของเครื่องทำความร้อนเส้นฮาโลเจน

ก่อนอื่นมากำหนดเงื่อนไขกันก่อน
“ความกว้างที่เส้นควบแน่นแสงแคบที่สุดเรียกว่าความกว้างของโฟกัส
ระยะทางที่กลายเป็นความกว้างของโฟกัสเรียกว่าความยาวโฟกัส
ความกว้างของโฟกัสในความยาวโฟกัสคืออุณหภูมิสูงสุด
คุณสามารถเปลี่ยนความยาวโฟกัสเพื่อเปลี่ยนความกว้างของโฟกัส
แม้ว่าความกว้างจะเท่ากัน ยิ่งระยะทางยิ่งใกล้ อุณหภูมิความร้อนก็จะสูงขึ้นตามไปด้วย”

(1) ความสัมพันธ์ระหว่างความกว้างโฟกัสและกำลัง (W)
ยิ่งกำลัง (W) ยิ่งสูง เส้นผ่านศูนย์กลางท่อก็จะยิ่งใหญ่ขึ้น ความกว้างโฟกัสเพิ่มขึ้นตามสัดส่วน
เส้นผ่านศูนย์กลางท่อมีสามประเภท: Φ10, Φ13 และ Φ18

(2) ความสัมพันธ์ระหว่างความกว้างโฟกัสและเส้นผ่านศูนย์กลางท่อ
ความกว้างโฟกัสไม่ควรมากกว่าเส้นผ่านศูนย์กลางของท่อ เส้นผ่านศูนย์กลางท่อ Φ10, Φ13 และ Φ18 เป็นขนาดต่ำสุดของความกว้างโฟกัส

(3) ความสัมพันธ์ระหว่างความกว้างโฟกัสและความยาวโฟกัส
การเพิ่มหรือลดความกว้างโฟกัสจากความกว้างโฟกัสที่ระบุ ความกว้างโฟกัสจะกว้างขึ้น และพื้นที่กว้าง (ไม่อยู่ในโฟกัส) จะร้อนขึ้น
แม้ว่าปริมาณแสงที่สะสมจะเท่ากัน ยิ่งเวลาทำความร้อนสั้นลง ความหนาแน่นของพลังงานที่สามารถปล่อยออกมาก็จะยิ่งสูงขึ้นเท่านั้น การทำความร้อนที่อุณหภูมิสูงโดยใช้ประสิทธิภาพของหลอดไฟ

* สามารถผลิตกระจกควบแน่นได้ด้วยการออกแบบที่กำหนดเอง แต่ทั้งในด้านราคาและเวลาในการจัดส่ง
เราขอแนะนำให้คุณพิจารณาใช้ตำแหน่งโฟกัสที่เลื่อนไปจากผลิตภัณฑ์มาตรฐาน

ด้านล่างนี้คือรูปภาพของ HLH-65W/f75/200V-2kW ที่ส่องสว่างที่แรงดันไฟฟ้า 100V ที่ระยะ 4 ระยะ

(ภาพที่ 1) การฉายรังสีด้วยรุ่น f=75 มม. ที่ระยะ 40 มม
ความกว้างในการโฟกัสกว้างกว่าระยะที่กำหนด

(รูปที่ 2) การฉายรังสีด้วยแบบจำลอง f = 75 มม. ที่ระยะห่าง 75 มม
เนื่องจากทางยาวโฟกัสคือระยะทางที่กำหนด ความกว้างโฟกัส (ฟลักซ์การส่องสว่าง) จึงมีประสิทธิภาพสูงสุด จุดโฟกัสจะมีอุณหภูมิสูงสุด

(ภาพที่ 3) การฉายรังสีโดยใช้แบบจำลองที่มี f=75 มม. ที่ระยะ 115 มม
ความกว้างในการโฟกัสกว้างกว่าระยะที่กำหนด

(ภาพที่ 4) การฉายรังสีด้วยรุ่น f=75 มม. ที่ระยะ 150 มม
ความกว้างของการรวบรวมแสงกว้างและมีการกระจายเกือบสม่ำเสมอ

เพื่อเพิ่มประสิทธิภาพสูงสุดของหลอดไฟและให้ความร้อนที่อุณหภูมิสูง ให้ใช้ “วิธีการให้ความร้อนการสะท้อนอีกครั้งอินฟราเรด”

(ซ้าย) HLH65W/f75 [ความร้อนเชิงเส้น] (ขวา) HLH-60W/f∞ [ความร้อนแบนว] ฉายรังสีด้วยแรงดันไฟฟ้า 100V

 

โครงสร้างพื้นฐานของฮีตเครื่องทำความร้อนเส้นฮาโลเจน

เครื่องทำความร้อนเส้นฮาโลเจนประกอบด้วยกระจกคอนเดนซิ่งที่มีฟังก์ชันการระบายความร้อน และกล่องขั้วต่อที่มีฟังก์ชันการระบายความร้อนแบบซีล
โครงสร้างผลิตภัณฑ์ส่วนใหญ่ใช้กระจกควบแน่นที่ควบแน่นแสงจากหลอดฮาโลเจนรูปทรงแท่ง

กระจกคอนเดนซิ่งในเครื่องทำความร้อนเส้นฮาโลเจนมี 2 ประเภท แบบควบแน่นแบบเส้นและแบบไฟขนาน
การควบแน่นแบบเส้นให้ความร้อนโดยการควบแน่นแสงจากหลอดฮาโลเจนให้เป็นเส้น
ประเภทการทำความร้อนพื้นผิวจะแปลงแสงจากหลอดฮาโลเจนให้เป็นแสงแบบขนานและทำการทำความร้อนพื้นผิว

นอกจากนี้ยังมีวัสดุสองประเภทสำหรับกระจกคอนเดนซิ่ง
กระจกคอนเดนซิ่งสำหรับการชุบทองและกระจกคอนเดนซิ่งสำหรับการขัดอะลูมิเนียม
เคลือบทองกระจกคอนเดนซิ่งสามารถสะท้อนแสงได้มากที่สุด
อย่างไรก็ตาม การชุบในกระจกคอนเดนซิ่งอาจลอกออกเนื่องจากก๊าซหรือการกระเจิงที่เกิดจากวัตถุที่ให้ความร้อน
หากหลุดออก แสงสะท้อนจะลดลง และจำเป็นต้องเคลือบใหม่

อลูมิเนียมขัดเงากระจกคอนเดนซิ่งมีการสะท้อนแสงต่ำกว่ากระจกคอนเดนซิ่งชุบทองประมาณ 10% แต่คุ้มค่ากว่า
เมื่อใช้แล้ว พื้นผิวของกระจกคอนเดนซิ่งจะค่อยๆ ออกซิไดซ์ และการสะท้อนแสงจะค่อยๆ ลดลง
ด้วยการขัดพื้นผิวกระจกใหม่ จะสามารถลดการสะท้อนที่ลดลงเนื่องจากการเกิดออกซิเดชันได้

ไม่ว่าจะใช้กระจกคอนเดนซิ่งประเภทใด สิ่งสำคัญคือต้องรักษาด้านในของกระจกคอนเดนซิ่งให้สะอาด และรักษาการสะท้อนแสงเพื่อให้ทำความร้อนได้อย่างมีประสิทธิภาพ

สามารถติดตั้งกระจกป้องกันเป็นทางเลือกในการป้องกันก๊าซที่เกิดจากวัตถุที่ให้ความร้อน
วิธีเพิ่มเติมคือการปิดผนึกภายในและเติมอากาศให้กระจกเพื่อใช้แรงกด