All posts by tha-musuhi

7. การสร้างรังสีอินฟราเรดไกล

วิธีทั่วไปในการผลิตรังสีอินฟราเรดไกลเทียมคือการให้ความร้อนกับเซรามิก
มักใช้เซรามิกชั้นดีที่มีอลูมินาและเซอร์โคเนียมเป็นหลัก
ความยาวคลื่นและการแผ่รังสีจะเปลี่ยนแปลงไปขึ้นอยู่กับประเภทของเซรามิกและอุณหภูมิการให้ความร้อน
ความยาวคลื่นที่ปล่อยออกมาของวัสดุมีดังนี้

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

 

6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

5. กฎพื้นฐานสี่ประการของการแผ่รังสี

① กฎของพลังค์

แม็กซ์ คาร์ล เอิร์นสท์ ลุดวิก พลังค์ 23 เมษายน พ.ศ. 2401 – 4 ตุลาคม พ.ศ. 2490 นักฟิสิกส์ชาวเยอรมัน
กฎของพลังค์เป็นสูตรในฟิสิกส์เกี่ยวกับการแผ่รังสีสเปกตรัมของคลื่นแม่เหล็กไฟฟ้าที่แผ่ออกจากวัตถุสีดำ หรือการกระจายความยาวคลื่นของความหนาแน่นของพลังงาน มีความเป็นไปได้ที่จะอธิบายความกระจ่างสเปกตรัมของรังสีแม่เหล็กไฟฟ้าจากวัตถุดำได้อย่างถูกต้องที่อุณหภูมิ T ตลอดช่วงความยาวคลื่นทั้งหมด ได้รับการแนะนำในปี 1900 โดยนักฟิสิกส์ชาวเยอรมัน Max Planck
เมื่อพิจารณาที่มาของกฎนี้ พลังค์สันนิษฐานว่าพลังงานของออสซิลเลเตอร์ในสนามรังสีเป็นจำนวนเต็มทวีคูณของปริมาณพลังงานพื้นฐานที่แน่นอน (ปัจจุบันเรียกว่าควอนตัมพลังงาน) ε = hν สมมติฐานควอนตัม (การหาปริมาณ) ของพลังงานมีอิทธิพลอย่างมากต่อจุดเริ่มต้นของกลศาสตร์ควอนตัม

 

กฎของพลังค์แสดงความสัมพันธ์ระหว่างพลังงานรังสีวัตถุดำกับความยาวคลื่น สสารปล่อยพลังงานออกมาในรูปของคลื่นแม่เหล็กไฟฟ้า ขึ้นอยู่กับอุณหภูมิของมัน พลังงานที่แผ่ออกมาจะเปลี่ยนแปลงไปตามอุณหภูมิ สสาร และสภาพพื้นผิว
สำหรับวัสดุทั่วไปมีค่าการแผ่รังสีน้อยกว่า 1 ดังนั้น คุณลักษณะพลังงานรังสีสเปกตรัมของวัสดุที่มีอุณหภูมิเท่ากับวัตถุสีดำจะถูกวาดเป็นเส้นโค้งที่ต่ำกว่าของวัตถุสีดำ

② กฎของชเต็ฟฟัน–บ็อลทซ์มัน

โจเซฟ สเตฟาน 24 มีนาคม พ.ศ. 2378 – 7 มกราคม พ.ศ. 2436 นักฟิสิกส์ชาวออสเตรีย

 

Ludwig Edouard Boltzmann 20 กุมภาพันธ์ พ.ศ. 2387 – 5 กันยายน พ.ศ. 2449 นักฟิสิกส์ชาวออสเตรีย
ปริมาณพลังงานที่ปล่อยออกมาจากสารจะเพิ่มขึ้นเมื่ออุณหภูมิของสารเพิ่มขึ้น ปริมาณพลังงาน (E) ที่แผ่ออกมาจากวัตถุสีดำที่อุณหภูมิสัมบูรณ์ T (หน่วย: เคลวิน K) ได้มาจากการรวมกฎของพลังค์เข้ากับความยาวคลื่นทั้งหมด และให้ไว้ในรูปแบบสัดส่วนกับกำลังสี่ของอุณหภูมิสัมบูรณ์ คุณสามารถ สิ่งนี้เรียกว่ากฎของชเต็ฟฟัน–บ็อลทซ์มัน
มันถูกค้นพบโดยการทดลองโดยโจเซฟ สเตฟาน ในปี พ.ศ. 2422 และได้รับการพิสูจน์ทางทฤษฎีโดยนักเรียนของเขา ลุดวิก โบลต์ซมันน์ ในปี พ.ศ. 2427 มันถูกเรียกว่า กฎของชเต็ฟฟัน–บ็อลทซ์มัน’ ตามชื่อของพวกเขา
E=5.6697×10-8・T4 [W/m2]

③ กฎการกระจัดของวีน

วิลเฮล์ม คาร์ล แวร์เนอร์ ออตโต ฟริทซ์ ฟรานซ์ เวียน 13 มกราคม พ.ศ. 2407 – 30 สิงหาคม พ.ศ. 2471 นักฟิสิกส์ชาวเยอรมัน

 

กฎการกระจัดของวีนถูกค้นพบโดย Wien ในปี พ.ศ. 2439
ความยาวคลื่นสูงสุด (จุดที่มีพลังงานสูงสุด) ของคลื่นแม่เหล็กไฟฟ้าที่ปล่อยออกมาจากสสารจะเปลี่ยนไปเป็นความยาวคลื่นที่สั้นลงเมื่ออุณหภูมิของหม้อน้ำเพิ่มขึ้น
กฎการกระจัดของวีน
แลมบ์ดา=2897/T [ไมโครเมตร]
สิ่งนี้เรียกว่ากฎการกระจัดของวีน
ตัวอย่างเช่น ความยาวคลื่นสูงสุด (แล) ของคลื่นแม่เหล็กไฟฟ้าที่ปล่อยออกมาจากมนุษย์โดยมีอุณหภูมิร่างกาย 36°C (อุณหภูมิสัมบูรณ์ T = 36 + 273 = 309K) คือ 2897-309 = 9.4μm กล่าวอีกนัยหนึ่ง มนุษย์ปล่อยรังสีอินฟราเรดไกลที่มีความยาวคลื่นสูงสุดประมาณ 9.4 ไมโครเมตร
พื้นที่รวม (พลังงาน) บนด้านความยาวคลื่นสั้นของความยาวคลื่นสูงสุดที่ระบุโดยกฎการกระจัดของวีน คือ 25% ของพลังงานทั้งหมด และด้านความยาวคลื่นยาวคือ 75% กล่าวอีกนัยหนึ่ง ด้านความยาวคลื่นยาว (ด้านรังสีอินฟราเรดไกล) ปล่อยพลังงานออกมามากกว่าสามเท่า
ดังนั้น ความยาวคลื่น (แล) ที่แบ่งพลังงานการแผ่รังสีของวัตถุสีดำที่อุณหภูมิสัมบูรณ์ T (K) ออกเป็นสองเป็นเท่าใด หาได้จากสูตร: แล = 4,108/T [μm]
ตัวอย่างเช่น ที่ความยาวคลื่นขอบเขต 3 μm ระหว่างบริเวณรังสีอินฟราเรดช่วงคลื่นสั้นและบริเวณรังสีอินฟราเรดไกล อุณหภูมิวัตถุดำ T ซึ่งพลังงานรังสีหารด้วย 50% คือ T = 4,108/3 = 1,369 (K) (= 1,369 – 273) = 1,096°C. มาสุ
จะเห็นได้ว่ารังสีอินฟราเรดไกลใช้น้ำหนักมากจนถึงอุณหภูมิที่สูงมาก นอกจากนี้ความยาวคลื่นสูงสุดในเวลานี้คือ 2,897/1,369 = 2.1 ไมโครเมตร ซึ่งเป็นธรรมชาติในบริเวณรังสีอินฟราเรดช่วงคลื่นสั้น
เวียนนาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี พ.ศ. 2454 จากการค้นพบกฎการแผ่รังสีความร้อน

④ กฎการแผ่รังสีความร้อนของเคียร์ชฮ็อฟ (พลังงานที่เปล่งประกาย)

Gustav Robert Kirchhoff, 12 มีนาคม พ.ศ. 2367 – 17 ตุลาคม พ.ศ. 2430 นักฟิสิกส์ชาวปรัสเซียน (ปัจจุบันคือ แคว้นคาลินินกราด รัสเซีย)
อัตราส่วนของพลังงานการแผ่รังสีที่ปล่อยออกมาจากสสารในสมดุลการแผ่รังสีต่อความสามารถในการดูดซับของมันจะคงที่โดยไม่คำนึงถึงสสาร และค่าของมันจะเท่ากับพลังงานการแผ่รังสีของวัตถุสีดำที่สมบูรณ์แบบ
กล่าวอีกนัยหนึ่ง ในกรณีของวัสดุทึบแสงทั่วไป อัตราการดูดซึมและสภาพเปล่งรังสีจะเท่ากัน ซึ่งเป็นกฎที่ค้นพบโดย Kirchhoff ในปี 1860
Kirchhoff ค้นพบกฎเกี่ยวกับวงจรไฟฟ้า กฎเกี่ยวกับพลังงานการแผ่รังสี และกฎเกี่ยวกับความร้อนของปฏิกิริยา ดังนั้นกฎเหล่านี้จึงมักเรียกกันว่ากฎการแผ่รังสีความร้อนของเคียร์ชฮ็อฟ (พลังงานการแผ่รังสี)

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

4.เครื่องทำความร้อนคืออะไร?

พลังงานความร้อนเคลื่อนที่จากอุณหภูมิที่สูงขึ้นไปสู่อุณหภูมิที่ต่ำลง
วิธีที่ความร้อนเดินทางมีหลักการอยู่ 3 ประการ ได้แก่ การนำ การพาความร้อน และการแผ่รังสี
ในสถานการณ์จริง การถ่ายเทความร้อนจะเกิดขึ้นโดยใช้หลักการทั้งสามข้อนี้ร่วมกัน

[การนำความร้อน]

เมื่อปลายแท่งโลหะได้รับความร้อน ความร้อนจะค่อยๆ ถ่ายเท และปลายอีกด้านจะร้อน
การถ่ายเทความร้อนผ่านวัสดุนี้เรียกว่าการนำความร้อน
ค่าการนำความร้อนจะแตกต่างกันไปขึ้นอยู่กับสาร โลหะเป็นตัวนำความร้อนที่ดี
โดยทั่วไปก๊าซจะเป็นตัวนำความร้อนที่ไม่ดี
ดังนั้นวัสดุที่มีรูพรุนจึงมีการนำความร้อนต่ำกว่าวัสดุที่มีความหนาแน่น และใช้เป็นฉนวนความร้อน
การนำความร้อนเป็นปรากฏการณ์ที่ฟลักซ์ความร้อน (ปริมาณพลังงานที่ผ่านพื้นที่หน่วยในหน่วยเวลา) ถูกสร้างขึ้นภายในสารตามสัดส่วนของการไล่ระดับอุณหภูมิโดยไม่มีการเคลื่อนที่ของวัตถุ และแสดงได้ด้วยสูตรต่อไปนี้เป็น กฎของฟูริเยร์

q = ฟลักซ์ความร้อน W/m2
k=การนำความร้อน W/mK
T=อุณหภูมิเค
X=ตำแหน่ง ม
q=-k x dT/dX

[การพาความร้อน]

เมื่อน้ำหรืออากาศ (ของเหลวหรือก๊าซ) ถูกทำให้ร้อนจากด้านล่าง ส่วนที่อุ่นจะขยายตัวและมีความหนาแน่นน้อยลงและเพิ่มขึ้น ในขณะที่ส่วนบนที่เย็นกว่าจะลงมา การกระทำนี้ซ้ำแล้วซ้ำอีกและอุณหภูมิสูงขึ้นตลอด
วิธีการถ่ายเทความร้อนโดยการเคลื่อนย้ายของเหลวและก๊าซนี้เรียกว่าการพาความร้อน
การพาความร้อนแบบพาความร้อนอธิบายการถ่ายเทความร้อนที่เป็นสัดส่วนกับความแตกต่างของอุณหภูมิ และแสดงถึงฟลักซ์ความร้อนที่มาพร้อมกับการไหลของสสารและปรากฏการณ์ทางกายภาพอื่นๆ เช่น การควบแน่น การระเหย และการเปลี่ยนแปลงความเข้มข้น
dq = ปริมาณความร้อนที่ถ่ายเทผ่านพื้นที่หน่วยในหน่วยเวลา (W/m2)
h = สัมประสิทธิ์การถ่ายเทความร้อน
Tf = อุณหภูมิของเหลว
Ts= คืออุณหภูมิของพื้นผิวของแข็ง
dq = ชั่วโมง(Tf – Ts)

[การแผ่รังสีความร้อน ]

การแผ่รังสีความร้อนเป็นวิธีการส่งความร้อนที่ไม่ต้องใช้ตัวกลางเป็นตัวกลาง เช่น ความร้อนจากแสงอาทิตย์ (คลื่นแม่เหล็กไฟฟ้า) ที่ส่งถึงพื้นโดยตรงและทำให้โลกร้อนขึ้น
ในเวลานี้ ความร้อนจะถูกดูดซับโดยตรงจากวัสดุในรูปของคลื่นแม่เหล็กไฟฟ้า ส่งผลให้อุณหภูมิของวัสดุสูงขึ้น
การถ่ายเทความร้อนของรังสีอินฟราเรดไกล (ซึ่งกระตุ้นการสั่นสะเทือนซึ่งกันและกันของอะตอมที่ก่อตัวเป็นสสาร) ถือเป็นการแผ่รังสีความร้อนอย่างแท้จริง
เมื่อมีก๊าซอยู่ในตัวกลางขั้นกลาง ไนโตรเจน (N2) และออกซิเจน (O2) จะไม่ดูดซับรังสีอินฟราเรดไกล แต่ก๊าซมีขั้ว เช่น คาร์บอนไดออกไซด์ (CO2) และไอน้ำ (H2O) จะถูกดูดซับโดยก๊าซ
การแผ่รังสีความร้อนคือพลังงานที่ปล่อยออกมาเป็นคลื่นแม่เหล็กไฟฟ้าจากพื้นผิวของแข็งตามกฎของพลังค์ และการแลกเปลี่ยนพลังงานนั้นเป็นไปตามกฎของเคอร์ชอฟฟ์
กฎสเตฟาน-โบลต์ซมันน์ระบุว่าพลังงานการแผ่รังสีของวัตถุสีดำเป็นสัดส่วนกับอุณหภูมิของวัตถุต่อกำลังสี่

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

3. ประเภทของรังสีอินฟราเรด

[ประเภทของรังสีอินฟราเรด]

รังสีอินฟราเรดหมายถึงคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นยาวกว่าแสงสีแดงและสั้นกว่าคลื่นวิทยุความยาวคลื่นมิลลิเมตร ซึ่งมีความยาวคลื่นประมาณ 0.7μm – 1,000μm
รังสีอินฟราเรดแบ่งออกเป็นสามประเภทขึ้นอยู่กับความยาวคลื่น: รังสีอินฟราเรดช่วงคลื่นสั้น รังสีอินฟราเรดช่วงคลื่นกลาง รังสีอินฟราเรดไกล
หรือแบ่งออกเป็นสองส่วนคือรังสีอินฟราเรดช่วงคลื่นสั้นและรังสีอินฟราเรดไกล 3 ไมโครเมตร
การจำแนกความยาวคลื่นแต่ละครั้งจะแตกต่างกันเล็กน้อยขึ้นอยู่กับสมาคมวิชาการและสมาคม

[รังสีอินฟราเรดช่วงคลื่นสั้น]

รังสีอินฟราเรดช่วงคลื่นสั้นเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นประมาณ 0.7 – 2.5 ไมโครเมตร ซึ่งใกล้เคียงกับแสงสีแดงที่ตามองเห็นได้
เนื่องจากคุณสมบัติของมันคล้ายกับแสงที่มองเห็น จึงถูกใช้เป็น “แสงที่มองไม่เห็น” ในกล้องอินฟราเรด การสื่อสารแบบอินฟราเรด และรีโมทคอนโทรลสำหรับเครื่องใช้ในบ้าน

[รังสีอินฟราเรดช่วงคลื่นกลาง]

รังสีอินฟราเรดช่วงคลื่นกลางเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นประมาณ 2.5 – 4 ไมโครเมตร (2.5-10 ไมโครเมตรในสนามดาราศาสตร์) และบางครั้งจัดเป็นส่วนหนึ่งของรังสีอินฟราเรดช่วงคลื่นสั้น

[รังสีอินฟราเรดไกล]

รังสีอินฟราเรดไกลเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นประมาณ 4 – 1,000 ไมโครเมตร (3 – 1,000 ไมโครเมตรโดยรังสมาคมฟาร์อินฟราเรด) และมีคุณสมบัติคล้ายกับคลื่นวิทยุ
รังสีอินฟราเรดจะถูกปล่อยออกมาจากวัตถุเสมอ และปรากฏการณ์นี้เรียกว่ารังสีวัตถุสีดำ ยิ่งอุณหภูมิของวัตถุสูงขึ้น รังสีอินฟราเรดที่ปล่อยออกมาก็จะยิ่งแรงขึ้น และความยาวคลื่นสูงสุดของรังสีจะแปรผกผันกับอุณหภูมิ
ความยาวคลื่นสูงสุดของรังสีอินฟราเรดที่ปล่อยออกมาจากวัตถุที่มีอุณหภูมิห้อง 20°C คือประมาณ 10 μm

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

 

2.แสงรังอินฟราเรดคืออะไร?

แสงที่มองไม่เห็นด้วยตาเปล่าแต่มีพลังในการให้ความร้อนกับสิ่งต่างๆ เรียกว่า “รังสีอินฟราเรด” เพราะมันมีอยู่ “นอกช่วงสีแดง”
รังสีอินฟราเรดคือ “คลื่นแม่เหล็กไฟฟ้า” เช่น “รังสีเอกซ์” “รังสียูวี” “แสงที่มองเห็น” “ไมโครเวฟ” และ “คลื่นวิทยุ”

คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เกิดจากการเปลี่ยนแปลงของสนามไฟฟ้าและสนามแม่เหล็กในอวกาศ
สนามไฟฟ้าและสนามแม่เหล็กสลับกันสร้างซึ่งกันและกันผ่านการเหนี่ยวนำแม่เหล็กไฟฟ้า ทำให้เกิดสภาวะที่อวกาศสั่นสะเทือน และความผันผวนเป็นระยะของสนามแม่เหล็กไฟฟ้านี้แพร่กระจายไปสู่อวกาศโดยรอบเป็นคลื่นตามขวาง ทำให้เกิดพลังงาน เป็นรังสีประเภทหนึ่ง ปรากฏการณ์.
ดังนั้นจึงเรียกว่ารังสีแม่เหล็กไฟฟ้า
เนื่องจากอวกาศสั่นสะเทือนด้วยพลังงาน จึงคิดว่าคลื่นสามารถแพร่กระจายได้แม้ในสุญญากาศ ซึ่งไม่มีวัสดุ (ตัวกลาง) ที่จะส่งผ่านได้
ทิศทางการสั่นสะเทือนที่เกิดจากสนามไฟฟ้าและสนามแม่เหล็กของคลื่นแม่เหล็กไฟฟ้าจะอยู่ในมุมฉากซึ่งกันและกัน และทิศทางการเคลื่อนที่ของคลื่นแม่เหล็กไฟฟ้าก็ทำมุมฉากเช่นกัน
โดยพื้นฐานแล้ว มันเดินทางตรงผ่านอวกาศ แต่ในอวกาศที่มีสสารอยู่ ปรากฏการณ์ต่างๆ เช่น การดูดซับ การหักเห การกระเจิง การเลี้ยวเบน การรบกวน และการสะท้อน จะเกิดขึ้น
มีการสังเกตด้วยว่าทิศทางการเดินทางนั้นโค้งงอเนื่องจากการบิดเบือนเชิงพื้นที่ เช่น สนามโน้มถ่วง

ความเร็วของคลื่นแม่เหล็กไฟฟ้าที่แพร่กระจายในสุญญากาศนั้นแตกต่างกันไปไม่ว่าผู้สังเกตจะเคลื่อนที่ไปในทิศทางหรือความเร็วใดก็ตามก็จะมีค่าคงที่ 299,792,458 m/s เสมอ (ประมาณ 300,000 กิโลเมตรต่อวินาที) ได้รับการยืนยันจากการทดลองมากมาย และด้วยเหตุนี้จึงเรียกว่าความเร็วแสงในสุญญากาศ และเป็นหนึ่งในค่าคงที่ทางกายภาพที่สำคัญที่สุด
ไอน์สไตน์สร้างทฤษฎีสัมพัทธภาพพิเศษของเขาโดยอาศัยหลักการของความเร็วแสงคงที่ ซึ่งเปลี่ยนแนวคิดเรื่องเวลาและอวกาศไปอย่างสิ้นเชิง
ความเร็วของคลื่นแม่เหล็กไฟฟ้าที่แพร่กระจายในวัสดุ (ตัวกลาง) คือ ความเร็วแสงในสุญญากาศหารด้วยดัชนีการหักเหของวัสดุ เช่น ความเร็วของแสงที่แพร่กระจายในเพชรที่มีดัชนีการหักเหของแสง 2.417 จะลดลงเหลือประมาณ 41 % ของความเร็วแสง
เมื่อคลื่นแม่เหล็กไฟฟ้าแพร่กระจายข้ามขอบเขตระหว่างวัสดุที่มีดัชนีการหักเหของแสงต่างกัน ความเร็วการแพร่กระจายของพวกมันจะเปลี่ยนไป ซึ่งทำให้เกิดการหักเหของแสงตามหลักการของ Huygens เลนส์ใช้ประโยชน์จากสิ่งนี้
โปรดทราบว่าดัชนีการหักเหของสารมักจะเปลี่ยนแปลงตามความยาวคลื่นของคลื่นแม่เหล็กไฟฟ้า และสิ่งนี้เรียกว่าการกระจายตัว
รุ้งกินน้ำดูเหมือนจะมีเจ็ดสีเพราะเมื่อแสงแดดส่องผ่านหยดน้ำขนาดเล็ก เช่น หมอก สีม่วง ซึ่งมีความยาวคลื่นสั้นกว่า จะหักเหมากกว่าสีแดงซึ่งมีความยาวคลื่นนานกว่าเนื่องจากการกระจายตัว
คุณสมบัติของคลื่นแม่เหล็กไฟฟ้าถูกกำหนดโดยความยาวคลื่น แอมพลิจูด (ความแรงของสนามแม่เหล็กไฟฟ้าคือกำลังสองของแอมพลิจูด) ทิศทางการแพร่กระจาย ระนาบของโพลาไรเซชัน (โพลาไรเซชัน) และเฟส
แบ่งออกเป็นรังสีแกมมา รังสีเอกซ์ รังสียูวี แสงที่มองเห็น รังสีอินฟราเรด และคลื่นวิทยุ โดยเริ่มจากความยาวคลื่นที่สั้นที่สุด
แสงที่มองเห็น(0.4 μm – 0.7 μm) เป็นช่วงคลื่นแม่เหล็กไฟฟ้าที่แคบมาก
ประวัติความเป็นมาของการค้นพบจะแตกต่างกันไปขึ้นอยู่กับ “ความยาวคลื่น” และเป็นที่เข้าใจกันอย่างเป็นระบบดังเช่นในยุคปัจจุบันนั่นเอง
Max Karl Ernst Ludwig Planck (นักฟิสิกส์ชาวเยอรมัน 23 เมษายน พ.ศ. 2401 – 4 ตุลาคม พ.ศ. 2490) ได้สร้างทฤษฎีควอนตัม

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

 

1. การค้นพบแสงรังอินฟราเรด

[ศาสตร์แห่งรังสีอินฟราเรด สารบัญ]

1. การค้นพบแสงรังอินฟราเรด
2.แสงรังอินฟราเรดคืออะไร?
3. ประเภทของรังสีอินฟราเรด
4.เครื่องทำความร้อนคืออะไร?
5. กฎพื้นฐานสี่ประการของการแผ่รังสี
6. อัตราการดูดซึมรังสีฟาร์รังอินฟราเรด
7. การสร้างรังสีอินฟราเรดไกล
8.การเปรียบเทียบรังสีอินฟราเรดไกลและรังสีอินฟราเรดใกล้
9. ข้อควรระวังในการใช้รังสีอินฟราเรด (Q&A)
10. ความถ่วงจำเพาะ ความร้อนจำเพาะ และค่าการนำความร้อนของวัสดุหลัก

 

ศาสตร์แห่งรังสีอินฟราเรด1 การค้นพบแสงรังอินฟราเรด

แสงรังสีอินฟราเรดถูกค้นพบโดยอัจฉริยะผู้รอบรู้


เซอร์เฟรเดอริก วิลเลียม เฮอร์เชล

เซอร์เฟรเดอริก วิลเลียม เฮอร์เชล (15 พฤศจิกายน พ.ศ. 2281 – 25 สิงหาคม พ.ศ. 2365) เป็นนักดาราศาสตร์ชาวอังกฤษจากเมืองฮันโนเวอร์ ประเทศเยอรมนี บุคคล นักดนตรี ผู้สร้างกล้องโทรทรรศน์ เขาประสบความสำเร็จมากมายในด้านดาราศาสตร์ รวมถึงการค้นพบดาวยูเรนัส การค้นพบดวงจันทร์ของดาวเสาร์ และการวิจัยเกี่ยวกับการเคลื่อนที่ที่เหมาะสมของดาวฤกษ์ที่อยู่กับที่

ฟรีดริช วิลเฮล์ม เฮอร์เชลเกิดที่เมืองฮันโนเวอร์ เป็นลูกคนที่สี่จากพี่น้องสิบคนในครอบครัวชาวยิว
เมื่ออายุ 14 ปี เขาได้เข้าร่วมวงดนตรี Hanoverian Guards โดยที่ Isaac พ่อของเขา และ Jacob น้องชายคนโตของเขา ทำหน้าที่เป็นผู้เล่นโอโบ
ขณะนั้นอังกฤษและเขตเลือกตั้งแห่งฮันโนเวอร์เป็นพันธมิตรกันภายใต้พระเจ้าจอร์จที่ 2 วงออเคสตราจึงได้รับคำสั่งให้ย้ายไปอังกฤษ
เขาเรียนภาษาอังกฤษในช่วงเวลาสั้นๆ และเมื่ออายุ 17 ปี เขาย้ายไปอังกฤษ และใช้ชื่อว่าเฟรเดอริก วิลเลียม เฮอร์เชล
ในอังกฤษ เฮอร์เชลประสบความสำเร็จในอาชีพการเป็นครูสอนดนตรีและหัวหน้าวงดนตรี
เฮอร์เชลเล่นไวโอลิน โอโบ และต่อมาเล่นออร์แกน
ในขณะที่ทำงานด้านดนตรี เฮอร์เชลเริ่มสนใจคณิตศาสตร์มากขึ้น และแม้กระทั่งศึกษาดาราศาสตร์ด้วยซ้ำ
เมื่ออายุประมาณ 34 ปี เขาเริ่มมีส่วนร่วมอย่างจริงจังในด้านดาราศาสตร์ เริ่มสร้างกล้องโทรทรรศน์ของตัวเอง และคุ้นเคยกับนักดาราศาสตร์ เนวิลล์ มาสเกลีน
เฮอร์เชลสังเกตดวงจันทร์ วัดความสูงของภูเขาบนดวงจันทร์ และรวบรวมรายการดาวคู่
จุดเปลี่ยนในชีวิตของเฮอร์เชลเกิดขึ้นเมื่อวันที่ 13 มีนาคม พ.ศ. 2324 เมื่อเขาอายุ 42 ปี
ในวันนี้ ฉันค้นพบดาวยูเรนัสที่บ้านของฉันที่ 19 New King Street, Bath
การค้นพบนี้ทำให้เขากลายเป็นคนดัง และเขาอุทิศตนให้กับการศึกษาดาราศาสตร์
เฮอร์เชลสร้างกล้องโทรทรรศน์มากกว่า 400 ตัวในช่วงชีวิตของเขา กล้องโทรทรรศน์ที่ใหญ่ที่สุดและมีชื่อเสียงที่สุดคือกล้องโทรทรรศน์สะท้อนแสงที่มีเส้นผ่านศูนย์กลาง 49 1/2 นิ้ว (126 ซม.) ซึ่งมีความยาวโฟกัส 40 ฟุต (12 ม.)
เฮอร์เชลค้นพบว่าสามารถได้ความละเอียดเชิงมุมที่สูงมากโดยการบดบังรูรับแสงบางส่วนของกล้องโทรทรรศน์
หลักการนี้เป็นพื้นฐานของอินเทอร์เฟอโรเมทในดาราศาสตร์สมัยใหม่
เมื่อวันที่ 11 กุมภาพันธ์ พ.ศ. 2343 เฮอร์เชล วัย 62 ปี กำลังทดสอบตัวกรองเพื่อดูจุดดับดวงอาทิตย์
สังเกตว่าการใช้ฟิลเตอร์สีแดงจะทำให้เกิดความร้อนได้มาก
เฮอร์เชลค้นพบการแผ่รังสีอินฟราเรดของแสงแดดโดยการติดเทอร์โมมิเตอร์ไว้ใกล้กับแสงสีแดงในสเปกตรัมที่มองเห็นได้ผ่านปริซึม
เดิมทีเทอร์โมมิเตอร์นี้มีไว้สำหรับการวัดและควบคุมอุณหภูมิในห้องปฏิบัติการ
เฮอร์เชลต้องตกใจเมื่อพบว่ามีอุณหภูมิสูงกว่าสเปกตรัมที่มองเห็นได้
การทดลองเพิ่มเติมทำให้เฮอร์เชลสรุปได้ว่าต้องมีรูปแบบของแสงที่มองไม่เห็นเกินกว่าสเปกตรัมที่มองเห็นได้

 


เฮอร์เชลในปีต่อมา

 

แผนผังการทดลองของเฮอร์เชล

แรงบันดาลใจจากการทดลองของเฮอร์เชล นักฟิสิกส์ชาวเยอรมัน โยฮันน์ วิลเฮล์ม ริตเตอร์ (พ.ศ. 2319-2353) ค้นพบแสงอัลตราไวโอเลตในปี พ.ศ. 2344 โดยใช้ซิลเวอร์คลอไรด์ที่ไวต่อแสง

 

รู้เบื้องต้นเกี่ยวกับเครื่องทำความร้อนแบบฮาโลเจน

ภาพรวมของเครื่องทำความร้อนจุดฮาโลเจน

  1. ข้อควรระวังเพื่อความปลอดภัย (สำคัญ)
  2. คุณสมบัติของเครื่องทำความร้อนฮาโลเจน
  3. วิธีการเลือกฮีตเครื่องทำความร้อนจุดฮาโลเจนและเครื่องทำความร้อนเส้นฮาโลเจน
  4. ข้อควรระวังในการใช้เครื่องทำความร้อนฮาโลเจน

เครื่องทำความร้อนจุดฮาโลเจน

  1. ภาพรวมของเครื่องทำความร้อนจุดฮาโลเจน
  2. โครงสร้างพื้นฐานของเครื่องทำความร้อนจุดฮาโลเจน
  3. วิธีใช้เครื่องทำความร้อนจุดฮาโลเจน
  4. ความยาวโฟกัสและเส้นผ่านศูนย์กลางโฟกัสของฮีตเตอร์สปอตฮาโลเจน
  5. การกระจายอุณหภูมิของเครื่องทำความร้อนจุดฮาโลเจน
  6. เครื่องทำความร้อนจุดฮาโลเจนและการระบายความร้อน
  7. อายุการใช้งานของเครื่องทำความร้อนจุดฮาโลเจน

เครื่องทำความร้อนเส้นฮาโลเจน

  1. ภาพรวมของเครื่องทำความร้อนเส้นฮาโลเจน
  2. โครงสร้างพื้นฐานของฮีตเครื่องทำความร้อนเส้นฮาโลเจน
  3. วิธีใช้เครื่องทำความร้อนเส้นฮาโลเจน
  4. ความกว้างโฟกัสและความยาวโฟกัสของเครื่องทำความร้อนเส้นฮาโลเจน
  5. การกระจายอุณหภูมิขอเครื่องทำความร้อนเส้นฮาโลเจน
  6. การระบายความร้อนขอเครื่องทำความร้อนเส้นฮาโลเจน
  7. อายุการใช้งานของเครื่องทำความร้อนเส้นฮาโลเจน
  8. การทำความร้อนพื้นผิวบริเวณกว้างโดยใช้ฮีตเครื่องทำความร้อนเส้นฮาโลเจน

ความรู้พื้นฐานเครื่องทำความร้อนหลอดฮาโลเจน

  1. กระบวนการพัฒนาที่นำไปสู่หลอดฮาโลเจน
  2. ประเภทและกลไกของหลอดฮาโลเจน
  3. เกี่ยวกับขดลวดไส้หลอด
  4. การรักษาความร้อนของทังสเตน
  5. หลอดฮาโลเจนหลอดแก้วควอทซ์
  6. ซีลหลอดฮาโลเจน (ซีล)

ซีลหลอดฮาโลเจน (ซีล)

หลอดฮาโลเจน เช่น หลอดไส้ ต้องมีโครงสร้างปิดผนึกอย่างแน่นหนาเพื่อป้องกันไม่ให้ก๊าซที่ปิดผนึกรั่วไหลออกสู่ภายนอก ในหลอดฮาโลเจน อุณหภูมิของหลอดไฟต้องอยู่ที่ 250°C หรือสูงกว่าเป็นเงื่อนไขสำหรับวงจรฮาโลเจนที่จะเกิดขึ้น ดังนั้นหลอดไฟจึงใช้แก้วที่มีความต้านทานความร้อนสูง เช่น แก้วควอทซ์ แก้วควอตซ์มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนที่น้อยกว่าแก้วโซดาที่ใช้ในหลอดไฟทั่วไปมากกว่า 10 เท่า แก้วซิลิกาใช้ลวดตะกั่วที่ทำจากโลหะผสมของเหล็กและนิกเกิลที่เรียกว่าลวด Dumet และเนื่องจากค่าสัมประสิทธิ์ของการขยายตัวทางความร้อนค่อนข้างใกล้เคียง จึงสามารถปิดผนึกได้เหมือนเดิม เนื่องจากมีการใช้แก้วควอทซ์ในหลอดฮาโลเจน เพื่อให้ตรงกับค่าสัมประสิทธิ์ของการขยายตัวทางความร้อน ลวดตะกั่วตรงจะไม่ปิดผนึกด้วยแก้ว แต่จะใช้ฟอยล์โลหะบางพิเศษของโมลิบดีนัมที่มีความหนา 20 ถึง 30 ไมโครเมตร (0.02) มม. ถึง 0.03 มม.) ถูกนำมาใช้. หากฟอยล์โมลิบดีนัมหนากว่านี้ จะเกิดรอยร้าวในแก้วควอทซ์เนื่องจากความแตกต่างของค่าสัมประสิทธิ์การขยายตัวทางความร้อน ทำให้ไม่สามารถรักษาสภาพสุญญากาศได้ กลายเป็น.

ลวดตะกั่วทำจากโมลิบดีนัมหรือทังสเตน
เช่นเดียวกับโมลิบดีนัมฟอยล์ในส่วนการปิดผนึก ลวดตะกั่วนี้ไม่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนเช่นเดียวกับแก้วควอทซ์ ดังนั้นมันจึงถูกปิดผนึกด้วยการหนีบ แต่ก็ไม่ได้ปฏิบัติตามอย่างเคร่งครัด เฉพาะส่วนฟอยล์โมลิบดีนัมเท่านั้นที่สัมผัสใกล้ชิดกับแก้วควอทซ์ และทำให้โครงสร้างปิดสนิท ลวดตะกั่วที่ต่อออกจากส่วนที่ปิดสนิทของหลอดไฟจะสัมผัสกับอากาศภายนอกเสมอ และอยู่ในบรรยากาศที่มีอุณหภูมิสูงเมื่อจุดไฟ ในบรรยากาศที่มีอุณหภูมิสูง ลวดตะกั่วจะค่อยๆ ออกซิไดซ์และในที่สุดก็ลุกลามไปถึงฟอยล์โมลิบดีนัมของซีล เมื่อออกซิเดชันดำเนินไป อุณหภูมิที่เพิ่มขึ้นและความเครียดจากความร้อนเนื่องจากค่าความต้านทานที่เพิ่มขึ้นจะทำให้ชิ้นส่วนซีลเสียหาย ”
วิธีหนึ่งในการป้องกันความเสียหายนี้คือการรักษาฟอยล์โมลิบดีนัมเพื่อป้องกันการเกิดออกซิเดชัน วิธีแรกคือวิธีการฝังสารที่ประกอบด้วยโครเมียม อะลูมิเนียม ซิลิกอน ไททาเนียม แทนทาลัม แพลเลเดียม ฯลฯ โดยการฝังไอออนเข้าไปในโมลิบดีนัมฟอยล์หรือตัวนำด้านนอก วิธีที่สองคือการเคลือบผิวของฟอยล์โมลิบดีนัมด้วยฟิล์มที่ทนต่อการเกิดออกซิเดชันซึ่งทำจากซิลิกอนออกไซด์

ฟอยล์โมลิบดีนัมออกซิไดซ์ในบรรยากาศที่มีอุณหภูมิสูง และเริ่มออกซิไดซ์ทีละน้อยที่อุณหภูมิสูงกว่า 200°C ในอากาศ ในฐานะที่เป็นมาตรการป้องกันการเกิดออกซิเดชั่น การบังคับให้ชิ้นส่วนซีลเย็นลงด้วยลมอัดหรือติดตั้งฮีตซิงก์เพื่อกระจายความร้อนออกจากชิ้นส่วนซีลนั้นมีประสิทธิภาพ

ที่บริษัทของเรา เราเติมฐานอะลูมิเนียมของเครื่องทำความร้อนจุดฮาโลเจน
ด้วยผงโลหะออกไซด์ซึ่งมีคุณสมบัติการนำความร้อนที่ดี เพื่อเร่งการกระจายความร้อนของฮีตซิงก์ให้เร็วขึ้น

 

หลอดฮาโลเจนหลอดแก้วควอทซ์

เกี่ยวกับหลอดแก้วควอทซ์

เนื่องจากวงจรฮาโลเจน หลอดไฟฮาโลเจนจะต้องทำจากแก้วทนความร้อนที่มีอุณหภูมิ 250°C หรือสูงกว่าเมื่อติดไฟ นอกจากนี้ ก๊าซเฉื่อยและก๊าซฮาโลเจนภายในหลอดไฟยังถูกปิดผนึกที่ความดันสูง 1×10^5~4×10^5Pa และความดันขณะให้แสงสว่างจะสูงถึง 1.3 ถึง 7.0 เท่านี้ ด้วยเหตุนี้จึงใช้แก้วควอตซ์ แก้วซิลิกาเป็นวัสดุที่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำมาก ดังนั้นแม้ว่าพื้นผิวของแก้วจะมีความแตกต่างของอุณหภูมิ ความเค้นเนื่องจากความร้อนจะมีเพียงเล็กน้อย และสามารถรับมือกับการเปลี่ยนแปลงอุณหภูมิอย่างกะทันหันได้ แก้วควอตซ์เป็นสารที่มีความบริสุทธิ์สูง แต่มีสารเจือปนอยู่เล็กน้อย การชะล้างสิ่งเจือปนนี้สัมพันธ์อย่างใกล้ชิดกับอุณหภูมิ และในกรณีของแก้วควอทซ์ การชะสิ่งเจือปนและการซึมผ่านของก๊าซที่เติมเริ่มต้นที่ประมาณ 800°C เหตุผลที่ควรรักษาอุณหภูมิของหลอดไฟฮาโลเจนให้ต่ำกว่า 800°C โดยควรต่ำกว่า 700°C คือความสัมพันธ์ระหว่างสิ่งเจือปนและอุณหภูมิ หากสมดุลของก๊าซภายในหลอดฮาโลเจนเปลี่ยนไป จะทำให้เกิดสีดำและทำให้อายุการใช้งานของหลอดสั้นลง
ในบรรดาสิ่งเจือปนเหล่านี้มีน้ำผสมอยู่เล็กน้อย กระจกเป็นวัสดุที่กันน้ำได้ และคุณมองไม่เห็นน้ำภายในแก้ว ซึ่งปกติแล้วจะไม่เป็นปัญหา น้ำนี้มีอยู่ในกลุ่มไฮดรอกซิล (กลุ่มไฮดรอกซี) ที่อุณหภูมิสูง เมื่ออุณหภูมิสูงกว่า 600°C กลุ่มไฮดรอกซิลจะละลายเข้าไปในหลอดไฟ และแม้แต่น้ำเพียงเล็กน้อยก็ทำให้เกิดวัฏจักรของน้ำ ซึ่งเป็นการเร่งการใช้ทังสเตน ใน “วัฏจักรของน้ำ” ไอน้ำจะถูกย่อยสลายบนพื้นผิวของทังสเตนที่มีอุณหภูมิสูงให้กลายเป็นออกไซด์ของทังสเตนและอะตอมของไฮโดรเจน ทังสเตนออกไซด์จะระเหยและเกาะติดกับผนังกระจก และอะตอมไฮโดรเจนจะกำจัดออกไซด์ของออกซิเจนและคืนกลับเป็นไอน้ำ เป็นที่เข้าใจกันว่าการระเหยของทังสเตนซ้ำ ๆ นี้ช่วยเร่งการบริโภค
ในเวลานี้ วงจรฮาโลเจนยังเกิดขึ้นในเวลาเดียวกันในหลอดฮาโลเจน การเปลี่ยนตำแหน่งของไส้หลอดทังสเตนเนื่องจากวัฏจักรฮาโลเจนและการระเหยของไส้หลอดทังสเตนเนื่องจากวัฏจักรของน้ำทำให้พื้นผิวของไส้หลอดทังสเตนไม่สม่ำเสมอในช่วงเวลาสั้น ๆ ส่งผลให้ขาดการเชื่อมต่อ ดังนั้นจึงควรใช้แก้วควอทซ์ที่มีปริมาณน้ำน้อย นอกจากนี้ เหมาะอย่างยิ่งที่จะใช้กระบวนการผลิตที่ป้องกันไม่ให้น้ำ (ออกซิเจน) เข้ามาในระหว่างกระบวนการแปรรูปเป็นหลอดฮาโลเจน หากปะปนเข้าไป สามารถกำจัดออกได้ด้วยการอบชุบด้วยความร้อนที่อุณหภูมิ 800 องศาขึ้นไป หรือโดยการใส่ท่อรับออกซิเจนเข้าไปในหลอดไฟเพื่อดูดซับ

การทำความสะอาดพื้นผิวแก้วควอตซ์

หากพื้นผิวแก้วควอทซ์ถูกทำให้ร้อนโดยมีสิ่งสกปรกติดอยู่แม้เพียงเล็กน้อย สิ่งสกปรกจะซึมเข้าไปในแก้ว ทำให้ความแข็งแรงลดลง ขัดขวางวงจรฮาโลเจน และการสูญเสียน้ำซึ่งความโปร่งใสของแก้วจะสูญเสียไป
ดังนั้นจึงจำเป็นต้องดำเนินการทำความสะอาด . ละลายพื้นผิวแก้วควอตซ์ด้วยกรดไฮโดรฟลูออริกเพื่อขจัดสิ่งสกปรก แช่กรดไฮโดรฟลูออริก 5% ถึง 10% เป็นเวลาหลายนาที แล้วล้างกรดไฮโดรฟลูออริกออกให้สะอาดด้วยน้ำบริสุทธิ์ กรดไฮโดรฟลูออริกเป็นสารเคมีที่อันตรายมากต่อร่างกายมนุษย์ ดังนั้นจึงมักใช้แอมโมเนียมฟลูออไรด์ซึ่งมีอันตรายน้อยกว่า
เพื่อลดการเกิด devitrification ห้ามจับแก้วควอทซ์ด้วยมือเปล่า

เกี่ยวกับการแปรรูปแก้วควอทซ์

แก้วควอทซ์ถูกแปรรูปโดยการให้ความร้อนที่อุณหภูมิสูง (ประมาณ 2,000°C) ด้วยเตาแก๊ส ฯลฯ แล้วกดด้วยแท่งคาร์บอนหรือแท่งโลหะเพื่อทำให้เสียรูป หรือโดยการกดด้วยแม่พิมพ์โลหะ
หัวเตาแก๊สในอุดมคติคือเปลวไฟออกซิเจนไฮโดรเจน ในหัวเผาก๊าซ ออกซิเจนและไฮโดรเจนจะถูกผสมไว้ล่วงหน้า จากนั้นจะถูกเป่าออกจากหัวฉีดด้วยความเร็วสูงเพื่อเผาไหม้ , มี “หัวเตาแก๊สผสมขั้นสูง” ที่เผาไหม้ อย่างหลังมีความเร็วเปลวไฟน้อยกว่าและเหมาะสำหรับการประมวลผลพื้นที่ขนาดใหญ่ของควอตซ์
ประเภทการผสมรากช่วยป้องกันการเผาไหม้ไม่ให้เข้าสู่หัวฉีดโดยการสร้างการไหลความเร็วสูงภายในหัวฉีด ดังนั้นโดยพื้นฐานแล้วเปลวไฟจะกลายเป็นการไหลความเร็วสูงด้วย หัวเตาแก๊สรูปแบบนี้เหมาะสำหรับการให้ความร้อนในพื้นที่ขนาดเล็ก
หากความเร็วการไหลของหัวฉีดของหัวเผาแก๊สชนิดผสมรากนี้ลดลง การเผาไหม้จะเข้าสู่หัวฉีด (ปรากฏการณ์ย้อนรอย) และแก๊สผสมออกซิเจน-ไฮโดรเจนในหัวแก๊สจะระเบิดและเผาไหม้ในคราวเดียว ทำให้เกิดเสียงระเบิดดัง . หากปล่อยทิ้งไว้ในสถานะนี้ การเผาไหม้อาจดำเนินต่อไปในเครื่องผสมแก๊ส และบริเวณใกล้เคียงของเครื่องผสมจะไหม้
บางครั้งมีการใช้เปลวไฟผสมของก๊าซมีเทนหรือก๊าซโพรเพนและออกซิเจนในการประมวลผลควอตซ์ด้วยเหตุผลทางเศรษฐกิจ ในกรณีนี้ ก๊าซเชื้อเพลิงเหล่านี้ไม่ผสมกับออกซิเจนได้เร็วเท่ากับไฮโดรเจน และมีอุณหภูมิการเผาไหม้ที่ต่ำกว่า ดังนั้นส่วนใหญ่เป็น “หัวเผาแก๊สแบบผสมราก”
หัวเตาแก๊สที่มีรูหัวฉีดหลายรูใช้เพื่อทำความร้อนในพื้นที่ขนาดใหญ่ จุดให้ความร้อนค่อนข้างใกล้กับหัวฉีด และความเร็วการไหลของเปลวไฟนั้นรวดเร็ว ดังนั้นจึงมีแนวโน้มที่จะดันและทำให้กระจกที่ร้อนและอ่อนเสียรูป หากคุณหยุดแก๊สจากหัวเผาแก๊สนี้อย่างกระทันหัน ความเร็วการไหลของหัวฉีดจะลดลงและเกิดไฟย้อนกลับ ทำให้เกิดเสียงระเบิด
เพื่อหลีกเลี่ยงปัญหานี้ คุณสามารถหยุดออกซิเจนช้าๆ ก่อนแล้วจึงหยุดแก๊สเชื้อเพลิง หรือหยุดแก๊สเชื้อเพลิงก่อนแล้วเป่าออก ไม่ว่าจะด้วยวิธีใด ความเร็วของการไหลจะลดลง ดังนั้นการย้อนกลับจะเกิดขึ้นได้ง่าย และการปิดอย่างรวดเร็วจะไม่สามารถทำได้ เพื่อดำเนินการปิดเครื่องอย่างรวดเร็ว ให้หยุดก๊าซที่เผาไหม้และเป่าลมเข้าไปในเครื่องผสมพร้อมกันเพื่อเป่าออกโดยไม่ลดความเร็วการไหลของหัวฉีด
หัวเตาแก๊สนี้ยังต้องให้ความสนใจกับการจุดระเบิด เป็นเรื่องปกติที่จะดับแก๊สเชื้อเพลิงก่อนเพื่อจุดไฟแล้วจึงดับออกซิเจน แต่มันเป็นไปไม่ได้ที่จะจุดไฟอย่างรวดเร็ว การจุดระเบิดบ่อยครั้งสามารถจัดการได้โดยการจุดไฟด้วยหัวเผาเฉพาะ (เปลวไฟไฮโดรเจน) โดยปล่อยก๊าซเชื้อเพลิงและออกซิเจนพร้อมกันที่อัตราการไหลที่ตั้งไว้ล่วงหน้า
เมื่อแก้วร้อนและนิ่มลงพอสมควร ก็นำไปแปรรูปได้ แก้วควอทซ์อาจติดกับโลหะระหว่างการกดโดยใช้แม่พิมพ์โลหะ คาร์บอนมีประสิทธิภาพในการปลดปล่อยวัสดุเพื่อป้องกันสิ่งนี้ เมื่อคาร์บอนสัมผัสกับควอตซ์ที่มีอุณหภูมิสูง คาร์บอนจะลดการผลิต COx และสลายตัวอย่างรุนแรง โดยทั่วไปจะใช้น้ำมันเป็นวิธีการเติมคาร์บอน
เมื่อควอตซ์ถูกให้ความร้อนที่อุณหภูมิสูงและอ่อนตัวลง ซิลิกาจะเกาะติดกับบริเวณโดยรอบและกลายเป็นสีขาวขุ่น นี่เป็นเพราะควอตซ์ระเหยเนื่องจากความร้อนและยึดติดกับส่วนที่มีอุณหภูมิต่ำ เพื่อป้องกันสิ่งนี้ให้ได้มากที่สุด มีวิธีการใช้อากาศหรือหัวเผาแก๊สกับส่วนที่มีแนวโน้มว่าซิลิกาจะเกาะอยู่
การระเหยของผลึกจะรุนแรงในการลดเปลวไฟ คิดว่าเป็นเพราะควอตซ์ถูกลดขนาดเป็น SiO ทำให้ระเหยได้ง่ายขึ้น ดังนั้น ซิลิกาจะมีโอกาสเกาะติดน้อยลงหากตั้งค่าเปลวไฟในกระบวนการผลิตเป็นเปลวไฟที่มีออกซิเจนมากเกินไป อย่างไรก็ตาม เปลวไฟประเภทนี้มีกำลังความร้อนที่อ่อนกว่าเมื่อเทียบกับความเร็วการไหล และเนื่องจากไม่มีการลดปฏิกิริยา ฟอยล์โมลิบดีนัมจึงมีแนวโน้มที่จะออกซิไดซ์และแตกระหว่างการปิดผนึก
ควรเผาซิลิกาที่เกาะอยู่ออกด้วยเปลวไฟออกซิเจนส่วนเกินหรือกำจัดออกด้วยกรดไฮโดรฟลูออริก อย่างไรก็ตาม ไม่สามารถใช้เป็นหลอดไฟได้หลังจากปิดผนึกแล้ว
การกดควรทำในเวลาที่สั้นที่สุด เมื่อกดทับเป็นเวลานาน อุณหภูมิของควอตซ์จะลดลงอย่างรวดเร็ว ทำให้เกิดรอยร้าวและบิดเบี้ยวอย่างรุนแรง

การกำจัดความผิดเพี้ยนหลังการประมวลผลแก้วควอทซ์

เมื่อประมวลผลแก้วควอทซ์ ความผิดเพี้ยนจะเกิดขึ้นเนื่องจากการกระจายตัวของอุณหภูมิระหว่างการประมวลผล ความเครียดคือสถานะที่แรงอัดหรือแรงดึงยังคงอยู่ระหว่างโมเลกุลภายในควอตซ์ สามารถยืนยันการบิดเบือนด้วยสายตาได้ด้วย “เครื่องวัดความผิดเพี้ยน” ที่ใช้แสงโพลาไรซ์
เนื่องจากความเครียดที่ตกค้างนี้ลดความแข็งแรงของแก้วควอทซ์ จึงไม่สามารถทนต่อแรงดันภายในระหว่างการทำงานของหลอด ทำให้เกิดการแตกหรือร้าว ซึ่งนำไปสู่ความล้มเหลวในเบื้องต้นของหลอดเนื่องจากการรั่วไหลของก๊าซปิดผนึก นอกจากนี้ เมื่อเปลี่ยนหลอดไฟ หลอดไฟอาจแตกได้แม้ว่าคุณจะไม่ได้ออกแรงมากก็ตาม
การหลอมจะดำเนินการเพื่อขจัดความเครียดที่ตกค้าง ความเครียดที่ตกค้างสามารถลดลงได้มากโดยการจับชิ้นส่วนที่ผ่านกระบวนการไว้ที่อุณหภูมิสูงกว่าจุดหลอมเหลว อุ่นให้ร้อน จากนั้นค่อยๆ ทำให้เย็นลงเพื่อไม่ให้ความเครียดเกิดขึ้นอีก ระยะเวลาการถือครองและอัตราการเย็นตัวที่เหมาะสมขึ้นอยู่กับรูปร่างของวัสดุ การให้ความร้อนที่อุณหภูมิสูงยังมีข้อได้เปรียบในการเผาและปัดเศษรอยแตกเล็กๆ ที่เกิดขึ้นระหว่างการกดเพื่อให้ไม่เป็นอันตราย
แม้ว่าคุณจะไม่มีเตาขจัดความผิดเพี้ยนแบบพิเศษ แต่หากคุณทำงานอย่างระมัดระวังกับจุดเหล่านี้ ความผิดเพี้ยนสามารถลบออกได้จนถึงระดับที่ไม่มีความเสียหายจริง อย่างไรก็ตาม เป็นเรื่องยากที่จะขจัดความผิดเพี้ยนออกไปจนไม่สามารถตรวจจับได้ด้วยสเตรนเกจ

หลอดฮาโลเจนที่ใช้แก้วอื่นที่ไม่ใช่แก้วควอทซ์

หลอดแก้วควอทซ์ไม่ใช่ข้อกำหนดบังคับสำหรับวัสดุหลอดของหลอดฮาโลเจน หลอดฮาโลเจนที่ใช้แก้ว (แก้วอะลูมิโนซิลิเกตหรือแก้วบอโรซิลิเกตที่มีค่าสัมประสิทธิ์การขยายตัวตรงกับโมลิบดีนัม) ที่สามารถทนต่ออุณหภูมิสูงปานกลางได้ แม้ว่าจะไม่สูงเท่าแก้วควอทซ์ก็ตาม และใช้วิธีการปิดผนึกแบบปกติที่ไม่ใช้ กระดาษฟอยล์. ยังมีอยู่ เหล่านี้เป็นพันธุ์ที่ผลิตจำนวนมากและใช้เป็นวิธีลดต้นทุน อย่างไรก็ตาม ไม่สามารถใช้กับหลอดฮาโลเจนกำลังสูงได้ และไม่เหมาะสำหรับการผลิตล็อตเล็กๆ